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1 Introduction

Estimating preferences for decisions under risk is of fundamental importance for

economics, finance, management, and other fields. Thus, a plethora of methods

for preference elicitation has been developed. Those include multiple-question lists

(Holt and Laury, 2002, 2005; Eckel and Grossman, 2002), investment tasks (Gneezy

and Potters, 1997), and structural maximum likelihood methods (Andersen et al.,

2008; Moffatt, 2015), among others. Unfortunately, the performance of these meth-

ods according to a variety of criteria leaves much to be desired. The consistency

across different risk-elicitation tasks and methods is generally low, as is the test-

retest reliability for any given method (e.g. Crosetto and Filippin, 2016; Csermely

and Rabas, 2016; Mata et al., 2018; Holzmeister and Stefan, 2021; Perez, Hollard,

and Vranceanu, 2021). That is, preferences estimated according to one method

are not a good predictor for the preferences estimated according to another (or the

same) method. Most importantly, when one examines choices out of sample (that

is, decisions other than the ones used in the estimation procedure), the predictive

performance of preferences elicited according to those methods is poor (Dave et al.,

2010; Holt and Laury, 2014; Csermely and Rabas, 2016; Beauchamp, Cesarini, and

Johannesson, 2017; Charness et al., 2018, 2020). For example, Garagnani (2023)

recently studied the predictive performance of several established risk-elicitation

tasks and found them not to predict better than expected-value maximization,

which of course requires no elicitation at all. This is unsatisfactory and casts

doubts on the usefulness of elicited risk preferences. Commenting on this problem,

Friedman et al. (2014) went so far as to argue that, due to the limited predictive

validity of revealed preference measures, standard preference models as expected

utility theory are currently of little use for real-world institutions.

In this work, we show that a newly-introduced method of nonparametric pref-

erence revelation has better predictive performance for decisions under risk than

currently-used ones. Specifically, we rely on the “Time Will Tell” (TWT) method

introduced by Alós-Ferrer, Fehr, and Netzer (2021) for abstract settings, which

leverages the information contained in response times to reveal preferences inde-

pendently of any assumptions on Bernoulli utility functions or distributions of

behavioral noise. We then use preferences revealed according to this method to

make out-of-sample predictions (that is, for decisions not part of the data used to

reveal preferences) and compare the predictive performance to that of standard,

structural estimation methods tailored to decisions under risk.

The nonparametric TWT method is based on robust empirical regularities of

choices and response times arising in psychology and neuroscience. Specifically,
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error rates are lower and response times are shorter for easier choice problems

than for harder ones. These psychometric and chronometric effects have been

established using discrimination tasks (e.g., which line is longer, which number

is larger, etc.; Cattell, 1893, 1902; Moyer and Landauer, 1967; Moyer and Bayer,

1976; Laming, 1985; Dehaene, Dupoux, and Mehler, 1990; Klein, 2001; Wichmann

and Hill, 2001), but extend to cases where the correct response is subjective, e.g.

favorite colors (Dashiell, 1937). An early contribution by Mosteller and Nogee

(1951) suggested that psychometric effects (higher consistency for easier choices)

are also present for decisions under risk. Recent contributions by Alós-Ferrer

and Garagnani (2021, 2022a,b) have systematically demonstrated the presence of

both psychometric and chronometric effects in this domain. In particular, when

estimating preferences out of sample, new choices take longer and are more likely

to contradict the preferences when the difference in expected utilities is smaller.1

Conceptually, the TWT method is based on a generalization of random utility

models (RUMS; McFadden, 1974, 2001; Manski, 1977; Anderson, Thisse, and De

Palma, 1992), which are also the basis of structural maximum likelihood methods

to estimate risk preferences. In these models, choices arise from maximization

of a utility function u, but utilities are perturbed by a noise term ε. The TWT

method, however, goes beyond approaches using RUMs in three directions. First,

while structural methods rely on additional parametric assumptions on the shape

of the utility u and the distribution of the noise term ε, the TWT method re-

veals preferences without making parametric assumptions. That is, the method

is agnostic on the shape of the utility and the properties of the noise, and reveals

preferences not for a particular shape of utility and distribution of noise, but simul-

taneously for all combinations of utility and noise that fit the data. For example,

suppose that decisions in a dataset can be explained by a particular functional

form of u plus a specific distribution of noise, but they could also be explained by

assuming a different utility function (maybe even expected value maximization)

and a very different distribution of noise. The TWT method then identifies condi-

tions which allow to reveal preferences not for one utility function, but for both of

them simultaneously. This is useful because neither utility nor (especially) noise

terms are observable, and parametric assumptions are often imposed for analytical

convenience only.

1Fudenberg, Strack, and Strzalecki (2018) suggested that the fact that error rates and re-
sponse times are large when utility differences are small reflects the difficulty in separating the
values of the options in the decision maker’s brain. This process can be captured through drift-

diffusion models (e.g., Ratcliff, 1978; Shadlen and Kiani, 2013). Baldassi et al. (2020) provided
a characterization of those models in terms of psychometric effects.
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Second, the method builds upon a more general version of RUMs than the ad-

ditive RUMs typically used in the literature. In additive RUMs, utility differences

for alternatives x, y are perturbed by noise terms εx, εy, and a choice of x over y is

assumed to occur if u(x) + εx > u(y) + εy, or, equivalently, u(x) − u(y) > εy − εx.

In the more general version that we use, utility noise is allowed to be pair-specific.

That is, choice follows a noisy realization u(x) − u(y) + εxy, where the term εxy

is not assumed to be a difference of alternative-specific noise terms. This encom-

passes standard (additive) RUMs, but also trembling-hand models (Loomes, Mof-

fatt, and Sugden, 2002), where errors are directly related to the choice pairs, and

random parameter models (Loomes and Sugden, 1998; Apestegúıa and Ballester,

2018), where a parametric functional form is assumed for the utility term, but the

parameter is subject to a random perturbation.2

Third, the TWT method incorporates response times, allowing to take into

account both psychometric and chronometric effects. Psychometric effects are

accounted for because the probability of a choice which goes against the utility

difference (hence an error) is larger if u(x)−u(y) is closer to zero, that is, errors are

more likely as choice pairs are closer to indifference.3 The TWT method expands

the definition of (generalized) RUMS by adding a chronometric function capturing

the monotonic relation between (realized) utility differences and response times,

i.e. chronometric effects. Preference revelation results, however, do not depend on

the exact shape of this function, as long as the chronometric effect holds.

Our focus is on decisions under risk and the comparison between structural

estimation methods based on additive RUMs (or random parameter models) and

the TWT method. Alós-Ferrer, Fehr, and Netzer (2021) applied the method to

a dataset on snack choices and obtained 81% correct predictions out of sample.

However, this is outside the risk domain and can obviously not be compared to

the structural methods typically used there. That is, the open question at this

point is not whether the TWT method performs reasonably well in abstract set-

tings, but rather whether it performs better than established, structural methods

in economically-relevant domains. To answer this question, we focus on two differ-

ent datasets on risky choices and perform out-of-sample prediction exercises using

a number of standard structural methods and the TWT method, keeping the sets

2Random parameter models are particular cases of the generalized RUMs in Alós-Ferrer, Fehr,
and Netzer (2021) because, in the former, noise in the parameter can be equivalently written as
a pair-specific noise term εxy as in the latter. However, the resulting (transformed) utility noise
distribution will generally be non-symmetric.

3This is also true for additive RUMS. Psychometric effects were part of the motivation for
the original probit model of Thurstone (1927), which is a particular case of additive RUM.
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of decisions to be used for estimation and to be used for prediction constant across

methods.

The TWT approach requires datasets where subjects make the same choice

multiple times and where response times were reliably measured. We obtained

two datasets with these characteristics from Davis-Stober, Brown, and Cavagnaro

(2015) and Kalenscher et al. (2010). We find that the predictive performance of

standard, parametric microeconometric methods is rather modest, but the non-

parametric TWT method significantly improves upon them. The predictive per-

formance out of sample is high enough to be useful, and larger than the stan-

dard levels reported in the literature. Specifically, 76% and 72% of out-of-sample

choices, respectively, are correctly predicted for the two datasets. In comparison,

none of the structural methods we consider is able to correctly predict more than

60% and 59% of out-of-sample choices, respectively.

Intuitively, the reason that the TWT method improves upon structural esti-

mations is that the latter rely on specific utility forms (CARA, CRRA, etc.) and

distributional assumptions for error terms (logit, probit, etc.). In contrast, the

TWT method replaces such assumptions with actual data on the response times

of choices, and obtains preference revelation results which hold for all utility func-

tions and distributions of errors which fit the data (both choices and response

times). Of course, all models are wrong, but the TWT model is “less wrong” since

its results hold not just for a particular utility form and distribution of noise, but

for a large set of them.

This point is important. A further result in Alós-Ferrer, Fehr, and Netzer

(2021) allows to predict choice frequencies out of sample at the cost of a stronger

assumption, namely that error terms have a Fechnerian structure, as is the case

of logit and probit models. Strictly speaking, this is not a parametric assumption,

but it brings the TWT method closer to standard structural methods using those

error distributions. We again examine the performance of the method and find

that, under this additional assumption, its advantage over parametric methods

vanishes, although no specific set of parametric assumptions improves upon the

TWT estimations in both datasets.

The paper is structured as follows. Section 2 briefly reviews the theoretical

framework. Section 3 presents and compares the out-of-sample prediction analyses

for the two datasets. Section 4 presents the additional results assuming Fechner

errors. Section 5 concludes. Further analyses and details are in the (Online)

Appendix.
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2 Non-Parametric Preference Revelation

We compare the predictive performance of the TWT method and standard para-

metric (structural) methods. The latter entail the estimation of a utility function

with a pre-specified functional form (say, CARA or CRRA) within the context

of a random utility model (Anderson, Thisse, and De Palma, 1992; McFadden,

2001) or a random parameter model (Loomes and Sugden, 1998; Apestegúıa and

Ballester, 2018), with additional, specific distributional assumptions on the shape

of the noise (e.g., logit or probit models). Appendix A summarizes the (standard)

microeconometric approach we followed for the parametric methods.

In contrast, the TWT approach (Alós-Ferrer, Fehr, and Netzer, 2021) entails

the non-parametric estimation of an ordinal preference using response times and

choice frequencies, which is possible under the additional (also non-parametric)

assumption that the noise term is symmetric. Specifically, for a choice between

options x and y, this approach identifies joint conditions on the data (choice fre-

quencies and response times) such that any model of decisions based on utilities

u(·) and (symmetric) pair-specific noise which rationalizes the data must be such

that u(x) > u(y). In particular, this encompasses any random utility model with

symmetrically-distributed noise, but also trembling-hand models (e.g. Loomes,

Moffatt, and Sugden, 2002) which assume a fixed strict preference plus a pair-

specific error.4 The power of the approach is precisely that there is no need to

assume any specific model, utility function, or distribution of errors. Rather, pref-

erence revelation obtains independently of the model. However, since no particular

utility function is estimated, the method is agnostic about specific parameters as

e.g. risk attitudes. It merely reveals an ordinal preference, which is however enough

to make predictions out of sample.

2.1 Formal Framework

The formal framework is as follows. Let X be a finite set of options. Denote

by C = {{x, y} | x, y ∈ X, x 6= y} the set of all binary choice problems, and let

4Random parameter models assume a parametric utility form and add a noise term to the
parameter of the utility function instead of to the utility itself. These models are particular
cases of the general random utility models in Alós-Ferrer, Fehr, and Netzer (2021), because the
parameter noise can be recast in a pair-specific noise term. However, these models will generally
violate the symmetry assumption, because symmetric parameter noise does not translate into
symmetric utility noise.
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D ⊆ C be the set of choice problems on which we have data.5 A dataset is modeled

as follows.

Definition 1. A stochastic choice function with response times (SCF-RT) is a pair

of functions (p, f) where

(i) p assigns to each {x, y} ∈ D the frequencies p(x, y) > 0 and p(y, x) > 0, with

the property that p(x, y) + p(y, x) = 1, and

(ii) f assigns to each {x, y} ∈ D the strictly positive density functions f(x, y)

and f(y, x) on R+.

That is, p(x, y) is the proportion of the time that a decision maker chose x

when offered the binary choice between x and y. The assumption that p(x, y) > 0

for all {x, y} ∈ D implies that choice is noisy, that is, every alternative is chosen

with at least some small probability. The density f(x, y) describes the distribution

of response times conditional on x being chosen, and the corresponding cumulative

distribution function is denoted by F (x, y).

Definition 2. A (symmetric) random utility model with a chronometric function

(symmetric RUM-CF) is a triple (u, ṽ, r) where u : X → R is a utility function

and ṽ = (ṽ(x, y))(x,y)∈C is a collection of real-valued random variables, with each

ṽ(x, y) having a density function g(x, y) on R, fulfilling the following properties:

(RUM.1) E[ṽ(x, y)] = u(x) − u(y),

(RUM.2) ṽ(x, y) = −ṽ(y, x),

(RUM.3) the support of ṽ(x, y) is connected, and

(RUM.4) noise is symmetric: for all δ ≥ 0, g(x, y)(u(x)−u(y)+δ) = g(x, y)(u(x)−

u(y) − δ).

Further, r : R++ → R+ is a continuous function that is strictly decreasing in

its argument v whenever r(v) > 0, with limv→0 r(v) = ∞ and limv→∞ r(v) = 0.

The random variables ṽ(x, y) and their densities g(x, y) capture noisy choice.

Condition (RUM.1) requires that noise is unbiased (equivalent to assuming mean

zero for an additive term εxy = ṽ(x, y) − (u(x) − u(y))). Condition (RUM.2)

reflects that the choice between x and y is the same as the choice between y and

5Alós-Ferrer, Fehr, and Netzer (2021) employs the notation (x, y) for a choice, i.e. a choice
there is written as an ordered pair, but (x, y) and (y, x) represent the same choice. The difference
is purely notational.
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x. Condition (RUM.3) is a regularity condition requiring that the support has no

gaps. (RUM.4) adds the assumption that noise is symmetric.6 Last, r represents

the chronometric function, which maps realized values of utility differences v into

response times r(|v|). Specifically, easier choices (where the value ṽ(x, y) is larger)

are faster. Given {x, y} ∈ C, the random variable describing the response times

predicted by the model conditional on x being chosen is given by

t̃(x, y) = r(|ṽ(x, y)|),

conditional on ṽ(x, y) > 0.

Note that the conditional distributions of response times F (x, y) and F (y, x)

can be very different, that is, we do not impose independence between choice

outcome and response time. Empirically, response times do differ depending on

which alternative is chosen for a given pair (see, e.g. Luce, 1986, Chapter 6.4.3).

In terms of the model, it follows from (RUM.2) that the distributions of response

times conditional on either choice in a given pair {x, y} would be identical if

u(x) = u(y), but will in general differ whenever u(x) 6= u(y). The formal result

we rely on guarantees preference revelation for all symmetric RUM-CFs which

rationalize (explain) the data.

Definition 3. A symmetric RUM-CF (u, ṽ, r) rationalizes an SCF-RT (p, f) if

(i) p(x, y) = Prob[ṽ(x, y) > 0] holds for all {x, y} ∈ D, and

(ii) F (x, y)(t) = Prob[t̃(x, y) ≤ t | ṽ(x, y) > 0] holds for all t > 0 and all

{x, y} ∈ D.

In other words, a symmetric RUM-CF (the model) rationalizes an SCF-RT

(the data) if it reproduces both the choice frequencies and the conditional response

time distributions in the latter. We say that an SCF-RT is rationalizable within

the class of symmetric RUM-CFs if there exists a symmetric RUM-CF in that class

that rationalizes it. The next definition captures preference revelation.

Definition 4. A rationalizable SCF-RT reveals that x is preferred to y if all sym-

metric RUM-CFs that rationalize the SCF-RT satisfy u(x) ≥ u(y). It reveals that

6Theorem 1 of Alós-Ferrer, Fehr, and Netzer (2021) considers preference revelation without
assuming symmetric noise. This result, however, only identifies sufficient conditions and hence
does not generally reveal complete preferences for a given dataset. The assumption of symmetry
is needed to ensure that prediction is always possible. Interestingly, any RUM with symmetric
noise, and any drift diffusion model with constant or decreasing boundaries is guaranteed to
generate data which fulfill the sufficient conditions mentioned above (Alós-Ferrer, Fehr, and
Netzer, 2021, Propositions 4 and 6).
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x is strictly preferred to y if all symmetric RUM-CFs that rationalize the SCF-RT

satisfy u(x) > u(y).

2.2 Preference Revelation Out of Sample

It is immediate that, under symmetric noise, p(x, y) > p(y, x) reveals a strict

preference for x over y. To obtain out-of-sample predictions (i.e., predictions for

choice pairs {a, b} /∈ D), the idea is to triangulate a preference indirectly through

comparisons with a reference option. The intuition is that, if a is preferred to

x∗ with fast response times, this preference is relatively strong, i.e. u(a) is much

larger than u(x∗). If b is preferred to the same x∗ with slow response times, this

preference is relatively weak, i.e. u(b) is only slightly larger than u(x∗). Even

though no conclusion follows from transitivity (as both a and b are preferred to

x∗), the cardinality embodied in response times should allow to conclude that u(a)

is above u(b), that is, a is preferred to b. Theorem 2 in Alós-Ferrer, Fehr, and

Netzer (2021) shows that, however, this intuition is elusive, and the meaning of

“fast” and “slow” is subtle. Specifically, for each {x, y} ∈ D with p(x, y) > p(y, x),

define θ(x, y) as the 1/2p(x, y)-percentile of the response time distribution of x,

i.e., F (x, y)(θ(x, y)) = 1
2p(x,y)

. The quantity θ(x, y) > 0 combines information

about choice probabilities and response times, that is, it corresponds to a different

percentile for each choice pair. Once one replaces “fast or slow response time” with

θ(x, y), the result fully captures the intuition above. We restate it here spelling

out all implicit conditions in Alós-Ferrer, Fehr, and Netzer (2021) for convenience.

Theorem 1 (Alós-Ferrer, Fehr, and Netzer, 2021, Theorem 2). Let {x, y} ∈ C \D

and suppose there exists x∗ ∈ X such that {x, x∗}, {y, x∗} ∈ D. For symmet-

ric RUM-CFs, a rationalizable SCF-RT reveals a preference between x and y as

follows.

• If p(x, x∗) ≥ 1
2

≥ p(y, x∗), a preference for x over y is revealed (strictly if

one of the inequalities is strict).

• If p(x, x∗) ≤ 1
2

≤ p(y, x∗), a preference for y over x is revealed (strictly if

one of the inequalities is strict).

• If p(x, x∗), p(y, x∗) > 1
2
, a preference for x over y is revealed if θ(x, x∗) ≤

θ(y, x∗) (strictly if this inequality is strict), and a preference for y over x is

revealed otherwise.
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• If p(x, x∗), p(y, x∗) < 1
2
, a preference for x over y is revealed if θ(x∗, x) ≥

θ(x∗, y) (strictly if this inequality is strict), and a preference for y over x is

revealed otherwise.

Hence, by fixing a reference option x∗, one can derive a full preference among

all alternatives which have been compared to x∗ in a dataset including response

times.7 Note that the first two cases in the theorem follow directly by transitivity

and because noise is symmetric. The two remaining cases (which are the ones

stated in Alós-Ferrer, Fehr, and Netzer, 2021, Theorem 2) are the interesting ones,

as the available data and transitivity have no implication in the absence of our

result.

In practice, a full preference over the available options in a dataset with a refer-

ence option x∗ is obtained as follows. Consider all options x such that p(x, x∗) > 1
2
.

These options are ranked (in terms of preference) in the inverse order to that dic-

tated by the quantities θ(x, x∗), i.e. x ≻ x′ if and only if θ(x, x∗) < θ(x′, x∗). Now

consider all options x such that p(x, x∗) < 1
2
. These options are ranked (in terms

of preference) in the order dictated by the quantities θ(x∗, x), i.e. x ≻ x′ if and

only if θ(x∗, x) > θ(x∗, x′). Last, if there is any option such that p(x, x∗) = 1
2
, we

obtain that x ∼ x∗.

To apply this result, we need to estimate the density of the distribution of

response times. As in Alós-Ferrer, Fehr, and Netzer (2021), the kernel density

estimates were performed in STATA using the akdensity function, which delivers

CDFs as output. We estimate the distribution of log-transformed response times

to avoid boundary problems. The estimates use an Epanechnikov kernel with

optimally chosen non-adaptive bandwidth. For the case where some choice is

made only once out of the total number of repetitions (only a single response time

is available) an optimal bandwidth cannot be determined endogenously, so we set

it to 0.1, yielding a distribution function close to a step function at the observed

response time.

Remark 1. In practice, Theorem 1 allows to derive a prediction under two assump-

tions. The first is that the underlying noise is symmetric, condition (RUM.4). This

is weaker than the structural assumptions imposed in parametric estimation meth-

ods, and in particular is always fulfilled whenever errors are assumed to have a

Fechnerian structure, as is the case of standard approaches using probit (normally-

distributed errors) or logit models (see also Section 4). The second is that, for any

choice {x, y} which is not available in the dataset, there is another option x∗ such

7We remark that, even though the method capitalizes on the cardinal information contained
in response times, it reveals an ordinal ranking of alternatives, i.e. a preference.
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that the choices {x, x∗} and {y, x∗} are available in the dataset. For experimental

data, fulfilling this condition is a matter of experimental design. For instance, an

efficient way to ensure that this condition is met is to include a reference option

x∗ such that participants face all choices {x, x∗} (a “star” design). This is the case

in both datasets we use in Section 3.

2.3 Intuition for the Revelation Result

Theorem 1 relies on the psychometric and chronometric effects mentioned in the

introduction. These effects are well-established in psychology and neuroscience,

and are receiving increasing attention in economics. The psychometric effect refers

to the fact that choices are noisier (and error rates are larger) when alternatives are

more similar or, in preference terms, when decision makers are closer to indiffer-

ence (e.g., Cattell, 1893; Dashiell, 1937; Mosteller and Nogee, 1951; Laming, 1985;

Klein, 2001; Wichmann and Hill, 2001; Fudenberg, Strack, and Strzalecki, 2018;

Alós-Ferrer and Garagnani, 2022a,b). The chronometric effect is the observation

that choices are slower when alternatives are more similar or, again in preference

terms, when decision makers are closer to indifference (e.g., Cattell, 1902; Dashiell,

1937; Moyer and Landauer, 1967; Moyer and Bayer, 1976; Dehaene, Dupoux, and

Mehler, 1990; Moffatt, 2005; Chabris et al., 2009; Krajbich, Oud, and Fehr, 2014;

Krajbich et al., 2015; Fudenberg, Strack, and Strzalecki, 2018; Alós-Ferrer and

Garagnani, 2022a,b). The psychometric effect is implicitly incorporated in stan-

dard random utility models, because it is more likely that (additive) noise will

offset an underlying preference of x over y if the utility difference u(x) − u(y) is

small than if it is large. The chronometric effect was first incorporated in random

utility models in Alós-Ferrer, Fehr, and Netzer (2021). Both are also standard

implications of sequential sampling models from the cognitive sciences as the well-

known drift-diffusion model (Ratcliff, 1978; Fudenberg, Strack, and Strzalecki,

2018; Baldassi et al., 2020).

The intuition for Theorem 1 is as follows. Assuming symmetric error distri-

butions, p(x, y) ≥ 1/2 reveals a preference for x over y. Suppose, however, that

one does not have data for the choice {x, y}, but there is a third option x∗ such

that we do have data for the choices {x, x∗} and {y, x∗}. If choice frequencies

reveal that x∗ is preferred to one of the options in {x, y} but not to the other, by

transitivity we obtain preference revelation between x and y. These are the first

two (straightforward) cases in Theorem 1.

The interesting cases are when choice frequencies reveal that either x∗ is pre-

ferred to both x and y or the other way around, and hence transitivity yields no
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additional information. Suppose that p(x, x∗), p(y, x∗) > 1
2

and hence both x and

y are preferred to x∗ (the intuition for the other case is analogous). With purely

ordinal preferences, nothing can be said about the relation between x and y. By

virtue of the chronometric effect, however, response times reveal the strength of

preference, and the latter allow for preference revelation. Suppose, for instance,

that response times for the choice {x, x∗} are relatively short, while response times

for the {y, x∗} choice are relatively large. By the chronometric effect, this means

that the utility difference u(x) − u(x∗) in any model that rationalizes the data

must be relatively large, while the utility difference u(y)−u(x∗) must be relatively

small. That is, u(x) − u(x∗) > u(y) − u(x∗) > 0 and hence u(x) > u(y), revealing

a preference for x over y.

The problem, however, lies in capturing the actual meaning of “relatively fast”

and “relatively slow.” Theorem 1 provides a revelation result independently of the

model of (symmetric) noise and the underlying utility function u. This level of

generality implies that fast and slow cannot be captured with simple summary

statistics as means or medians. The theorem identifies a statistic which combines

information from choice frequencies and response times. Specifically, the choice

{x, x∗} is relatively faster than the choice {y, x∗} if θ(x, x∗) ≤ θ(y, x∗), where

θ(z, x∗) is the 1/2p(z, x∗)-percentile of the response time distribution for the choice

{z, x∗} conditional on z being chosen. To see how θ(z, x∗) combines information

from response times and choice frequencies, suppose the latter carry relatively

little information, i.e. p(z, x∗) is close to (but above) 1/2. Then θ(z, x∗) is a large

percentile, becoming the maximum value of the distribution in the limit (if there

is one). On the contrary, suppose the choice frequency carries a large amount of

information, i.e. p(z, x∗) is close to one. Then θ(z, x∗) approaches the median.

That is, θ(z, x∗) becomes a larger percentile of the (conditional) response time

distribution as choice frequencies carry less and less information. The key is that

the comparison between θ(x, x∗) and θ(y, x∗) involves different percentiles of the

respective response time distributions reflecting the fact that the respective choice

frequencies carry different amounts of information for the two choice pairs.

3 Predicting Choices Out of Sample

3.1 Description of the Datasets

In this section we conduct out-of-sample prediction analyses using both stan-

dard structural models and Theorem 1. We rely on two existing datasets, from

Davis-Stober, Brown, and Cavagnaro (2015) (DSBC) and Kalenscher et al. (2010)
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Figure 1: The datasets of DSBC (left) KTHDP (right). Assuming symmetric
noise in a dataset with a reference option (x∗) we can use all comparisons with
this reference (in red for DSBC) to predict out-of-sample all other choices (in blue).
For KTHDP, this can be done for any of the lotteries.

(KTHDP). Those are ideal for our purposes because they include response times

and every participant repeated every choice a reasonable number of times.

In the dataset of DSBC, N = 60 subjects made binary choices among different

lotteries in a 2 × 2 within-subject design. Specifically, the experiment varied the

display format of the lotteries (pies vs. bars) and whether participants faced a

time constraint or not (4 seconds vs. no time limit). The choice pairs were drawn

from two sets of five lotteries each, with one lottery common to the two sets. All

possible combinations of the lotteries within each set were implemented, giving

rise to 20 distinct choice pairs. Each of these pairs was repeated 12 times in each

of the 4 possible conditions, for a total of 12×4×20 = 960 choices per participant.

Each participant took part in two sessions, each with two (randomly allocated)

combinations of time pressure and display format manipulations. One decision

from each condition was randomly selected and paid.

In the dataset of KTHDP, N = 30 subjects made all possible binary choices

among five different lotteries. Each of the 10 resulting choice pairs was repeated

20 times, for a total of 200 trials per participant. Participants needed to decide

within 4 seconds (otherwise the trial was missed). Each participant took part in

a single session while being scanned in an fMRI scanner. One randomly-selected

decision was paid, with dummy dollars converted into Euro at a 100:1 rate.

The structure of the dataset of DSBC (Figure 1, left) allows for a direct ap-

plication of Theorem 1. All lotteries were repeatedly compared to a specific one

(denoted x∗ in the figure, where these comparisons are highlighted in red). The-

orem 1 above then allows to estimate a full preference relation using just those

decisions. The dataset also includes choices within the left-hand and right-hand

subsets (highlighted in blue in Figure 1). The estimated preferences can then be

used to predict the latter choices. That is, we can use the choice frequencies and

13



response times of the first type of choices (in red) to predict all other comparisons

(in blue) out of sample.

For structural estimation, we follow standard econometric approaches. As fre-

quently done in the literature, we assume an additive RUM with either a CRRA

utility function or a CARA function. We then repeat the analysis assuming a ran-

dom parameter model (with either CRRA or CARA functions) instead. For each

of the four resulting structural methods, we estimated risk attitudes, separately

for each individual, based only on the choices which involved x∗ (see Appendix A

for details on the estimation procedures). We then used this individual estimate

to predict all other choices not involving the lottery x∗. That is, all procedures

estimate preferences using the same first set of choices (in red in Figure 1) and

predict choices from the same second set (in blue).

In the dataset of KTHDP, all binary choices among five different lotteries were

made (Figure 1, right). To implement a comparable out-of-sample approach, we

replicated the structure of the analysis described above (both for the structural

methods and for Theorem 1) five times, with each analysis adopting one of the

five distinct lotteries in KTHDP as reference lottery x∗. For example, we applied

Theorem 1 and estimated utilities with a standard microeconometric approach

using only the four binary choices involving option [$500; 29%] and then predicted

the remaining six comparisons not involving this option. We did this for each

possible lottery, and report the average predictive performance across the five

different analyses.

3.2 Results

Figure 2 illustrates the results for both datasets. For DSBC, the predictive per-

formance of TWT, measured as the average out-of-sample proportion of correctly

predicted choices, is 76.14% (median 77.13%, min 49.62%, max 100%). This is

a reasonably-high performance.8 More importantly, the out-of-sample predictive

performance of TWT is significantly higher than that of standard econometric

techniques (Figure 2, left). Crucially, this observation holds independently of

the particular utility function assumed (CRRA vs. CARA) and of assumptions

on the shape of the noise (RUM vs. RPM). For DSBC (Figure 2, left) the av-

erage out-of-sample proportion of correctly predicted choices according to RUM

(CRRA) is 57.78% (median 56.25%, min 31.25%, max 87.50%) which is signifi-

8Alós-Ferrer, Fehr, and Netzer (2021) reports an out-of-sample predictive performance of
80.7% in a food choice study where the options were simple food snacks; Garagnani (2023) finds
that the out-of-sample predictive performance of different risk elicitation tasks is below 68%.
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Figure 2: Proportion of out-of-sample correctly predicted choices for RUM/RPM
and TWT for Davis-Stober, Brown, and Cavagnaro (2015) (on the left) and Kalen-
scher et al. (2010) (on the right) across different utility functions (CRRA vs.
CARA). 95% confidence intervals are represented in red.

cantly worse than what TWT achieves (WRS, N = 60, z = −6.040, p < 0.0001).

The superiority of TWT holds independently of the particular utility function as-

sumed (CRRA vs. CARA) and the assumptions on the shape of the noise (RUM

vs. RPM), even accounting for multiple-test corrections (RUM-CARA 59.55%,

z = 7.697, p < 0.0001; RPM-CRRA 55.24%, z = 8.713, p < 0.0001; RPM-CARA

56.81%, z = 8.740, p < 0.0001).9

The overall picture is very similar for KTHDP’s dataset (Figure 2, right).

TWT again achieves a reasonable predictive performance (mean 71.76%, me-

dian 77.83%, min 32.67%, max 100%) and outperforms standard econometric

approaches. The average out-of-sample proportion of correctly predicted choices

according to a RUM with CRRA utility and normally-distributed errors is 51.33%

(median 50.00%, min 0.00%, max 100.00%) which is significantly smaller than

that of TWT (WRS, N = 26, z = −3.881, p < 0.001). A similar result is ob-

tained for the other comparisons (RUM-CARA 56.00%, z = −3.188 p = 0.0008;

RPM-CRRA 59.11%, z = 3.087, p = 0.0013; RPM-CARA 54.56%, z = 3.506,

p = 0.0002), and accounting for multiple-test corrections.

9In Appendix B we show that these results are robust across the different conditions and
manipulations in DSBC (time pressure and lottery format).
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4 Predictive Performance Assuming Fechner Er-

rors

Standard microeconometric approaches often involve either probit models, i.e.

normally-distributed errors, or logit models. Both cases correspond to Fechne-

rian errors (e.g., Moffatt, 2015), i.e. a fixed shape of the (symmetric) distribution

of noise around the utility difference of each pair. Formally, noise in a RUM-CF is

Fechnerian if, for each {x, y} ∈ C and all v ∈ R, g(x, y)(v) = g(v − u(x) + u(y)),

where g is a common density with full support such that g(δ) = g(−δ) > 0 for all

δ ≥ 0.

Under the additional assumption of Fechnerian errors (as in any logit or probit

model), an additional result of Alós-Ferrer, Fehr, and Netzer (2021) (Theorem

3 there) provides a method to predict the proportion of choices and not just the

binary relation, without assuming a specific functional form for utilities or a specific

functional shape of the noise term, but assuming that noise is Fechnerian. In this

sense, in this section we are still agnostic regarding the specific utility function, but

we impose a stronger assumption on the noise. Strictly speaking, this assumption

is still nonparametric, but it is closer to the standard parametric assumptions of

structural models.

The result is as follows. Say that a RUM-CF is rationalizable in the class of

Fechnerian RUM-CFs if it is rationalizable as in Definition 3 according to some

Fechnerian RUM-CF (instead of just a symmetric RUM-CF). If an SCF-RT is

rationalizable in this sense, we say that it predicts choice probability p̄(x, y) for a

non-observed choice {x, y} ∈ C \ D if all Fechnerian RUM-CFs that rationalize

it satisfy Prob[ṽ(x, y) > 0] = p̄(x, y). That is, the predicted probabilities are

independent of the choice of (Fechnerian) RUM-CF, and hence the Fechnerian

assumption allows to predict choice probabilities out of sample. The following

result pins down the exact predictions.

Theorem 2 (Alós-Ferrer, Fehr, and Netzer, 2021, Theorem 3). Let {x, y} ∈ C \D

and x∗ ∈ X with {x, x∗}, {y, x∗} ∈ D. Within the class of Fechnerian RUM-CFs,

a rationalizable SCF-RT predicts the choice probability

p̄(x, y) =























p(x, z)F (x, z)(θ(y, z)) if p(y, z) > 1/2,

p(x, z) if p(y, z) = 1/2,

1 − p(z, x)F (z, x)(θ(z, y)) if p(y, z) < 1/2.
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Figure 3: Mean absolute errors for RUM/RPM and TWT for Davis-Stober, Brown,
and Cavagnaro (2015) (on the left) and Kalenscher et al. (2010) (on the right)
across different utility functions (CRRA vs. CARA). 95% confidence intervals are
represented in red.

To apply this result, we follow the same approach as for the previous analysis.

That is, for DSBC we predict choice frequencies in decisions not involving x∗ (recall

Figure 1) after revealing preferences from the decisions involving x∗. For KTHDP,

again we average the five possible out-of-sample exercises (taking each distinct

lottery in the dataset as the reference).

The standard structural estimations we carried out also allow to predict choice

frequencies (instead of deterministic binary choices), making the prediction compa-

rable with Theorem 2. For this purpose, we use the previous estimates to compute

the predicted choice frequencies in the corresponding RUM or RPM models. That

is, we use the estimated risk attitude and noise variance (for the RUM case) or the

estimated mean and variance of the individual risk attitudes (for the RPM case)

to predict choice frequencies. See Appendix A for further details.

To measure the accuracy of our predictions, we use the mean absolute error

as in Alós-Ferrer, Fehr, and Netzer (2021) and Clithero (2018). This measure

calculates the individual average distance between predicted and observed choice

frequencies. However, all results are qualitatively unchanged when we use squared

errors as a metric of comparison.

The results are shown in Figure 3 (recall that a good performance corresponds

to a small mean absolute error). For DSBC, the average mean absolute error across

individuals for the TWT method is 0.2120.10 This outperforms the results when

using a RUM estimation with CARA utilities (0.3316; WRS, N = 60, z = −5.926,

p < 0.0001) or an RPM approach with either CRRA (0.3787; WRS, N = 60, z =

10Alós-Ferrer, Fehr, and Netzer (2021) obtain 0.237 with the food choice data of Clithero
(2018). The latter obtains 0.209 using a parametric drift-diffusion model approach.
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−6.618, p < 0.0001) or CARA utilities (0.3765; WRS, N = 60, z = −6.530, p <

0.0001). However, the performance of a RUM estimation using CRRA functions

is better than that of TWT for this dataset (0.1354; WRS, N = 60, z = 6.140,

p < 0.0001).

A qualitatively similar result is obtained for KTHDP’s dataset (Figure 3, right).

The TWT approach achieves an average mean absolute error of 0.2564, which

outperforms RUM estimations with either CRRA (0.3970; WRS, N = 29, z =

2.240, p = 0.0240) or CARA utilities (0.3145; WRS, N = 24, z = 2.286, p =

0.0211). However, RPM estimations outperform TWT for this dataset, both with

CRRA (0.1859; WRS, N = 30, z = −2.910, p = 0.0028) and with CARA utilities

(0.1982; WRS, N = 30, z = −2.088, p = 0.0364), although these results do not

reach significance if adjusting for multiple testing.

The mixed results for this latter analysis might simply reflect the dangers

of additional, possibly-unwarranted assumptions used in estimation procedures.

Contrary to the previous section, we are now assuming Fechner errors in the TWT

approach (although not a specific functional shape), an assumption that might be

less warranted than simply symmetric errors as in the first analysis. Fechner errors

reduce the conceptual distance between the TWT method and the RUM approach

(with normally-distributed errors) or RPM analyses (with normally-distributed

risk attitudes). While without this assumption the TWT method significantly

outperformed the other, parametric approaches, adopting this assumption leads

to mixed results, which are also inconsistent across datasets.

5 Discussion

We show that, for decisions under risk (lottery choice), non-parametric meth-

ods using response times have a better predictive performance (of around 75% of

correctly-predicted choices out of sample in our datasets) compared to standard

parametric, structural estimations. The power of the technique, and the reason

why it improves upon structural methods, is that the use of response times allows

to reveal (ordinal) preferences in a nonparametric fashion, without unwarranted

assumptions on the functional form of utilities or the shape of the distribution of

noise. Of course, we do not claim that this method should substitute established

techniques, as it has its own shortcomings in terms of widespread applicability

(e.g., it requires datasets with repeated choices and reference options), but it has

the potential to be a powerful tool to validate and improve preference estimation.
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The second part of our analysis delivers an important caveat. As soon as

we introduce a specific, but commonly used, assumption over the distribution of

noise, the method’s performance for predicting choice frequencies (rather than

just choices) is not systematically different from that of standard parametric ap-

proaches. This suggests that assumptions over the distribution of the noise, which

are often made out of analytical convenience, might sometimes carry even more

weight than those on the specific utility functions.11 Taken together, our empiri-

cal results highlight the danger of uncritically using untested assumptions on the

distribution of noise.

Data Availability

The data used in the paper is from Davis-Stober, Brown, and Cavagnaro (2015)

and Kalenscher et al. (2010). We are grateful to those researchers for sharing

the data. Anybody using this data must acknowledge the sources and reference

Davis-Stober, Brown, and Cavagnaro (2015) and Kalenscher et al. (2010). Details

concerning the experiments can be found in the respective papers. The data and

the code replicating the results, tables, and figures in this article can be found in

the Harvard Dataverse (Alós-Ferrer and Garagnani, 2023).
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