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Abstract

Human errors in cognitive, attentional, and decision-making tasks are sometimes

faster than correct responses, and sometimes slower. Several existing models can

fit response time distributions exhibiting these phenomena. However, it is hard

to predict ex ante (i.e., before data collection) when errors will be fast or slow.

Relying on 20 different datasets comprising 31 experiments from different domains,

we empirically validate a simple nonparametric model which successfully predicts

when errors will be faster or slower than correct responses. The predictions also

include a generalized Stroop effect, as well as error rate differences. The model

formalizes how the interaction of multiple processes determines behavior and makes

predictions which depend on whether those processes are in alignment or conflict

in a given trial, which can be determined before data collection (e.g., congruent vs.

incongruent trials in conflict tasks). This yields new testable hypotheses which are

overwhelmingly supported in the data. The model’s predictions can also be seen as

a test of whether process multiplicity is a reasonable assumption in a given task.
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1 Introduction

A long discussion has examined whether errors are on average faster or slower than
correct responses. Empirically, both phenomena are often observed, depending on the
specific task, experimental implementation, and type of trials considered (e.g., Laming,
1968; Luce, 1986; Ratcliff and Rouder, 1998, 2000; Ratcliff et al., 2004). Further, both
asymmetries can often also be observed within the same task, depending on its imple-
mentation. For example, the relative speed of errors might depend on whether response
speed or accuracy are emphasized (Swensson, 1972; Luce, 1986; Ratcliff and McKoon,
2008). Even for a fixed task and implementation, the relative speed of errors might also
depend on the stimuli. For example, White et al. (2011) showed that errors tend to be
slower than correct responses in congruent trials of the Flanker task, but the opposite
is true in incongruent ones. Similarly, in a random-dot motion paradigm, Mulder et al.
(2012) found slow errors (compared to correct responses) for trials where a previous
cue was consistent with stimulus direction, and fast errors for trials where the cue was
inconsistent.

The empirical response time patterns comparing errors and correct responses have
motivated many theoretical developments in the psychological literature. Some models
can accommodate one of the two asymmetries. For example, Poisson parallel-counter
models (e.g, Townsend and Ashby, 1983; Smith and Van Zandt, 2000; Townsend and
Liu, 2020) predict that errors should always be slower than correct responses. A few
models can accommodate both asymmetries. For example, Blurton et al. (2020) show
that a Poisson random walk model with random starting points can accommodate fast
or slow errors (compared to correct choices). Another prominent example that can fit
either pattern is the drift-diffusion model (DDM; Ratcliff, 1978; Ratcliff et al., 2016)
with intertrial variability in drift rates and starting points (Ratcliff et al., 1999; Ratcliff,
2002; Ratcliff et al., 2016). With fixed drift rate and symmetric boundaries, the DDM
predicts identical response time distributions for errors and correct responses, but in-
tertrial drift-rate variability has been used to accommodate slow errors, while intertrial
variability in starting points (or, equivalently, in the asymmetry of the boundaries) can
accommodate the opposite pattern (Ratcliff and Rouder, 1998). Similarly, the linear
ballistic accumulator (LBA; Brown and Heathcote, 2005, 2008) accommodates fast or
slow errors through the interplay between starting point and drift rate variability. It is
important to highlight that these models can accommodate fast or slow errors (compared
to correct responses) in the sense that they can fit data exhibiting those characteristics.
Crucially, however, these models provide no theoretical explanation of why the speed of
errors should be asymmetric, and cannot predict when one of the two asymmetries will
occur for a fixed, given task (e.g., without changing instructions) before fitting the data.

In this contribution, our objective is different. Models as the DDM and other ex-
amples accommodate asymmetries in the relative speed of errors and correct responses
in the sense that specific parameter values or realizations can be found which produce
one or the other pattern. When applied to existing data, this corresponds to a fitting
approach, which seeks to account for empirical patterns by fitting a parametric model
to the data. Instead of parametric fitting, our motivation is nonparametric prediction.
That is, we focus on the ex ante prediction of asymmetries in response times and error
rates. Specifically, we propose and validate a simple model which can predict whether
errors are faster or slower than correct responses for specific types of trials, but does
so before data is collected, and then show its empirical bite in a large variety of tasks.
The approach is nonparametric in the sense that none of the predictions depends on
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the values of underlying parameters. Thus, we provide a simple model which is able to
predict ex ante when and why errors are systematically faster or systematically slower
than correct choices within the same paradigm. The model is also able to capture other
features of the data, as asymmetries in error rates or a generalized Stroop effect.

There are two further differences between our approach and previous work in the
literature. The first is that we aim to predict general (parameter-independent), direc-
tional effects, as e.g. whether errors are faster or slower than correct responses, rather
than studying quantitative relations between certain parameter values and response time
distributions. In this sense, the model serves the conceptual purpose of showing the link
between a specific theoretical structure (process multiplicity and the concept of process
conflict, as explained below) and widespread empirical patterns which transcend any
specific task or paradigm. However, this also means that the model is not comparable
to parametric models which aim to provide quantitative fits of specific datasets. In par-
ticular, it is not possible to ask the question of whether our nonparametric model has a
better fit than other, parametric models or not. This is simply not the purpose of our
work.

Another important difference is that we focus on predictions showing that errors
will be slower than correct responses for certain, pre-defined sets of trials, and faster
for other trials. For example, this will typically translate in different predictions for
congruent and incongruent trials in conflict tasks, where participants face potentially-
conflicting stimuli (e.g., Stroop, Flanker, and Simon tasks). This is in sharp contrast
with speed-accuracy effects. As remarked by Luce (1986, Section 6.4.3), errors are often
found to be slower than correct responses in experimental treatments where accuracy is
emphasized, and faster in other treatments where speed is emphasized or time pressure
is implemented (see, e.g., Hawkins and Heathcote, 2021). Our predictions are very
different, since they concern the relative speed of errors for different types of trials
within the same experimental treatment.

In this work, we show that the directional predictions of the model hold in a wide
variety of different contexts. For this purpose, we collected 20 different datasets com-
prising 31 experiments from the domains of cognitive control, attention, social cognition,
memory, and decision making. Those include laboratory, field, and on-line experiments,
spanning different levels of cognitive complexity, and involving a heterogeneous array of
cognitive processes. None of the datasets was collected with the aim to test our pre-
dictions. The tasks covered in the data include conflict tasks as, e.g., Flanker, Stroop,
and Simon tasks, but also many other paradigms which are not usually viewed as con-
flict tasks, e.g., attentional paradigms using Gabor patches, kinematograms, and clouds
of moving dots, imitation and perspective-taking tasks, word recognition tasks, false
memory paradigms, and decision-making tasks ranging from value-based decisions and
probability judgments to the Cognitive Reflection Test. We also go beyond binary choices
and include several datasets where more than two alternatives are available to decision
makers. The predictions of our model, including the relative speed of errors and correct
responses, are overwhelmingly supported in the data.

The model we rely on is a formalized, stylized dual process model assuming that
behavior is codetermined by two cognitively different processes (see, e.g., Evans, 2008;
Weber and Johnson, 2009, for reviews). Specifically, one process is assumed to be more
deliberative, and its modal response should correspond to normatively correct responses.
The other process is assumed to be more impulsive or intuitive in nature, and in particu-
lar to be faster and closer to a stimulus-response mapping. Both processes are stochastic,
in the sense that they do not always select the same choice. Crucially, the more intuitive
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process is assumed to react to different cues than the deliberative process. For example,
in a Stroop task, the deliberative process would be identifying the color in which a word
is printed, while the intuitive process would simply be reading the word. Thus, depend-
ing on stimuli, in some trials the typical, modal answer of the intuitive process will be
the same as that of the deliberative process (e.g., the word “RED” printed in red), and
we say that the processes are aligned. In other trials, modal answers will be different
(e.g., the word “BLUE” printed in red), and we say that the processes conflict. That is,
we speak of alignment when the modal responses of the processes coincide, and of con-
flict if they differ. For some paradigms, alignment and conflict trials correspond to what
the paradigm-specific literature calls congruent and incongruent trials, respectively. For
other paradigms, as we shall see, the classification is more subtle.

As remarked by Diederich and Trueblood (2018), dual process models are often
expressed as verbal theories rather than formalized accounts. Our model, which is based
on Achtziger and Alós-Ferrer (2014) and Alós-Ferrer (2018), is a formal model which
allows for precise, tractable mathematical derivations and testable predictions. The
model, however, is nonparametric in the sense that predictions obtain independently
of any fine-tuning or fitting of particular model components. Specifically, the model
predicts that errors will be slower or faster than correct responses depending on whether
a set of trials captures alignment or conflict, respectively. For many specific paradigms
(e.g., Stroop, Flanker, etc.), the candidate processes are clear a priori. Thus, which
trials correspond to alignment or conflict is also known before data collection, and hence
the model delivers clear predictions. Those predictions can also be used as a test of
whether in the specific paradigm considered behavior can be explained as the result
of the interaction of different processes or not, hence providing a formal test for dual-
process effects. In other words, the model is fully falsifiable (since the predictions do not
depend on fitting model’s parameters), but what is falsified is the joint hypothesis that
the model applies and two processes, one more deliberative than the other, codetermine
behavior in the considered task.

The intuition for the model’s predictions is as follows. For conflict trials, the intuitive
process often selects erroneous responses, and hence the average response time of errors
is brought down (fast errors). For alignment trials, the intuitive process is a cognitive
shortcut which often selects the correct response and does so faster than the deliberative
process. By virtue of being closer to a stimulus-response mapping, the intuitive process
is also more internally consistent. Hence, conditional on a erroneous response, it is more
likely than the decision is made by the deliberative process and is hence relatively slower
(slow errors). For example, in the domain of decision making, many decision problems
are designed to elicit intuitive but incorrect answers (Cognitive Reflection Test, Base
Rate Neglect, Syllogisms, etc.), which are often faster than correct ones (Raoelison
et al., 2020). This corresponds to fast errors under conflict. In a different domain, when
cueing attention is congruent with a subsequent stimulus (Denison et al., 2018; Hu and
Rahnev, 2019; Heathcote et al., 2019), errors are infrequent, but we will show that they
are often slower than correct choices. This corresponds to slow errors under alignment.

The model also delivers other directional predictions. In particular, it predicts larger
error rates and slower correct choices in conflict compared to alignment trials. The
latter is a generalized version of the Stroop effect, which is commonly found in different
implementations of this task (Liefooghe et al., 2019) and, as we will show, can also be
found in many other tasks. For example, in memory paradigms (Brainerd and Lee, 2019;
Charoy and Samuel, 2020) people seem to rely on semantic congruency as a short-cut (a
heuristic which can be viewed as an intuitive process) to judge whether a presented word
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was among a previously-memorized list or not. This implicit association biases people
to wrongly claim word recognition when a new word is semantically similar to others
that were actually in the list, resulting in more and faster errors in such (conflict) trials.

The model is kept as simple as possible while generating testable predictions as
described above. The framework can be kept nonparametric because the key assumptions
of the model are ordinal in nature, e.g. that the intuitive process is on average faster
and more internally consistent than the deliberative process. The model, however, could
be given specific, parametric microfoundations. For example, for the binary case it
could be formalized as a combination of two simple DDMs, each with a fixed drift rate.
While the deliberative DDM accumulates toward the correct response, the intuitive DDM
accumulates toward the intuitive response, which coincides with the correct one or not
depending on whether the trial is in alignment or in conflict, respectively. If the drift rate
of the intuitive process is larger in absolute value than that of the deliberative process
(hence making it swifter, as assumed in dual-process theories), all assumptions of our
model are fulfilled. The predictions derived here will hence hold independently of the
specific values of this new model’s parameters. The predictions also obtain independently
of whether other microfoundations are assumed, and extend to the multialternative case,
which would not be covered by this “dual DDM” approach.

The paper is structured as follows. We first introduce the basic model, the assump-
tions, and its predictions, for the binary case. We also extend the model to account for
non-decision times and process selection probabilities depending on conflict vs. align-
ment. We then briefly show that the predictions are overwhelmingly supported in all
the binary-choice experiments that we reanalyze. Then, to clarify the generality of our
approach, we give an overview of the experimental designs in the datasets. We start with
applications in the domain of cognitive control, followed by tasks involving attentional
processes, social cognition, memory, and finally decision making.

After completing the exposition of the binary choice case, we present an extension of
the model which makes the analogous predictions for multialternative choice tasks. We
then show that those predictions are supported in the corresponding experiments, and
then give a more detailed overview of the involved tasks. We then consider predictions
and results for a third type of trials often encountered in experimental paradigms, namely
neutral trials where the intuitive process should be inactive. Finally, we remark that
predictions on the relative speed of errors are obtained even though the model assumes no
such differences for the response times conditional on a single, given process. However,
we show that the model can be extended to the case where individual processes also
display asymmetries as observed empirically for neutral trials.

2 Model and Predictions: The Binary Case

Consider a decision maker facing a task with two possible answers (binary case), a
and b. We assume that two different decision processes codetermine behavior, a more
deliberative one, D, and a more intuitive/impulsive one, I. Specifically, we are thinking
of situations where the researcher has clear hypotheses on which decision processes affect
the decision and what their nature is, in terms of (relative) automaticity. Since we will
apply the model to a large number of different situations, however, we intentionally keep
the setting as abstract as possible at this point.

We assume that all involved decision processes are noisy, and in particular each of
the processes (D and I) can select each of the alternatives (a or b) with strictly positive
probability. Denote by P (a|D), P (b|D), P (a|I), and P (b|I) the probabilities that each
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alternative would be selected by each process, if that process would actually determine
behavior. Which of the two processes will actually determine the answer is, however,
a stochastic event (possibly reflecting central executive processing). Let ∆ > 0 be the
probability that the actual response is selected according to the more automatic process
I, and 1−∆ the probability that it is selected according to the more deliberative process
D. Thus, the actual probability of observing a choice of a is

P (a) = ∆P (a|I) + (1−∆)P (a|D).

Response times t are also assumed to be stochastic, that is, there will generally be
variation across different trials even for the same decision task. In this work, we are only
concerned with expected response times and not with distributions. Let RD = E[t|D]
and RI = E[t|I] denote the expected process response times conditional on the response
being selected by the more deliberative or the more automatic process, respectively.
For simplicity, we assume that expected process response times do not depend on the
actually-selected response (but will weaken this assumption in a latter section). However,
as we will argue below, this does not imply that the observed response times conditional
on one or the other alternative are identical.

For instance, Alós-Ferrer (2018) postulates that each of the processes corresponds
to a symmetric drift-diffusion model, with different drift rates µD, µI , but identical
boundaries and diffusion parameters. This is a possible microfoundation of the model,
but one could assume any other analytical form for processes D and I instead, as long as
the assumptions discussed below are fulfilled. With this formalization, it indeed follows
that all choice probabilities are strictly positive and that the response times of individual
processes are independent of the selected answer (e.g. Ratcliff and Rouder, 1998; Palmer
et al., 2005; Ratcliff et al., 2016).

2.1 The Basic Model I: Conflict, Alignment, and a Generalized Stroop
Effect

In all tasks and applications we will consider, one of the options is correct in a normative
sense, while the other is an error, although, in any given paradigm, whether a or b is
correct or an error will generally vary from trial to trial. Let xD ∈ {a, b} denote the
correct answer in the given trial. We assume that the deliberative process corresponds
to a noisy version of normative thinking and hence selects the correct answer more than
half of the time, P (xD|D) > 1/2. Alternatively, for tasks without an objectively-correct
answer, one could simply consider the word “correct” to be void of normative content, in
the sense that it describes whatever alternative the more deliberative process selects most
often. In other words, if the researcher has a clear candidate for the deliberative process,
xD is simply the modal answer of that process, independently of the interpretation. In
this sense, the deliberative process favors alternative xD (meaning it selects it more
often).

Denote by PD = P (xD|D) > 1/2 the probability that D selects its own favored
alternative. Analogously, let xI ∈ {a, b} be the alternative favored by the more automatic
process. Whether this process selects a or b more often, i.e. whether xI = a or xI = b,
depends on whether it is adaptive or maladaptive for the particular situation at hand. We
speak of alignment if xI = xD, i.e. if both processes favor the same option, and of conflict
if xI ̸= xD, that is, the processes favor different options. Denote by P I = P (xI |I) > 1/2
the probability that I selects its own favored alternative.
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Some paradigms might include trials where the more automatic process I is not
relevant, for instance because the cues that should trigger it are absent. Thus, in trials
of this type only process D is active. We call such trials neutral. Our predictions will
concentrate on conflict and alignment, but we will return to the comparison to neutral
trials (for the paradigms which allow it) in a latter section.

We now discuss the assumptions and predictions of the model. Naturally, the more
automatic process should be faster in expected terms than the more deliberative one.
We thus assume

(R) RD > RI .

For instance, this follows immediately if both processes are symmetric DDMs as de-
scribed above with |µI | > |µD|, i.e. if the more automatic process is viewed as a swifter
one, closer to stimulus-response associations and the more deliberative one is a rule-
based, more cognitive process.

The first testable prediction of the model concerns the comparison of conflict and
alignment. If the researcher has identified the decision processes of interest, then the
respective favored options are known ex ante. Thus, within a given experiment, some
trials might be in conflict and some might be in alignment, and which are which will
be known before data collection. Thus, statements conditional on conflict vs. alignment
are testable. The following prediction states that the response time of correct responses
must be strictly longer in situations of conflict than in situations of alignment. Notice
that this prediction arises exclusively from process multiplicity and assumption (R), and
hence it is diagnostic for the presence of multiple processes differing in their degree of
automaticity.

Theorem 1. If (R) holds,

(D1) correct responses are slower in expectation in case of conflict than in case of align-
ment.

The intuition for Theorem 1 is as follows (all proofs are in the appendix). Indepen-
dently of whether a given trial corresponds to conflict or alignment, process D delivers
the same proportion of correct responses (xD), which are relatively slow. In case of
conflict, process I favors the erroneous answer xI ̸= xD, and hence typically contributes
relatively fewer (fast) correct answers. In case of alignment, process I favors the correct
response xI = xD, and hence typically contributes relatively many (fast) correct answers.
Hence, one obtains faster correct responses under alignment than under conflict.

A version of Theorem 1 has been previously discussed in Achtziger and Alós-Ferrer
(2014) (in the context of reinforcement vs. normative belief updating in decision making)
and Alós-Ferrer (2018) (where the processes were assumed to be DDMs). The prediction
of this theorem is a generalization of the well-known “Stroop Effect” (Stroop, 1935;
MacCleod, 1991), which describes a slow-down of (correct) responses when one is asked
to name the color that a word is printed in but that word happens to name a different
color (e.g., “Red” printed in blue) compared to when the word names the color it is
printed in (e.g., the word “Red” printed in red). However, this effect is usually attributed
to central executive functions of the brain related to the detection and resolution of
conflict among elementary responses, which tax cognitive resources and require time
(Bargh, 1989; Baddeley et al., 2001), but enable the inhibition of automatic responses in
case of conflict. The model presented here does not assume such a difference in response
times (although, as will be discussed below, it is compatible with this addition), and
Theorem 1 holds in its absence.
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The model also makes a straightforward prediction for the proportion of correct re-
sponses across conflict and alignment. Note that this result is independent of assumption
(R), as it does not involve response times.

Theorem 2. (D2) The proportion of correct responses is strictly smaller in case of con-
flict than in case of alignment.

The intuition for Theorem 2 is immediate. In case of alignment, both processes favor
the correct response. In case of conflict, process D favors a correct response, but process
I favors an error. Even though each process might still select the option favored by
the other rule in case of conflict, it does so less often. Hence, in case of alignment the
commonly-favored response is selected more often than any of the individual choices in
case of conflict.

2.2 The Basic Model II: Errors, Fast and Slow

Since the more automatic process I is closer to stimulus-response associations, it is also
natural to assume that it is less noisy and more internally consistent, that is, it selects
the own favored answer xI more often than the more deliberative process D selects xD.
Thus we assume

(P) P I > PD.

Again, this follows immediately if both processes are symmetric DDMs as described
above with |µI | > |µD|, since a larger drift rate (in absolute terms) implies both shorter
response times and higher consistency. In case of alignment, this implies that process
I is objectively better (in the sense of being both faster and more often correct) than
process D, and thus can be seen as an efficient cognitive shortcut. In case of conflict,
though, process I’s favored answer is actually an error, and the process often leads the
decision maker astray.

Even with this simple structure, the model already makes nontrivial predictions for
the comparison of response times of errors and correct responses, and specifically predicts
a non-trivial interaction between responses and cognitive situations or trial types (conflict
or alignment). Specifically, the prediction is that errors will be fast in case of conflict
and slow in case of alignment.

Theorem 3. Assume (R).

(T1) In case of conflict, the expected response time of errors is shorter than the expected
response time of correct answers.

(T2) Assume (P). In case of alignment, the expected response time of errors is larger
than the expected response time of correct answers.

The intuition behind Theorem 3 is as follows (again, the formal proof is in the
Appendix). The (slow) deliberative process always favors the correct response (by def-
inition), and the (fast) automatic process favors either an error or the correct response
depending on whether the trial corresponds to conflict or alignment. Thus, in case
of conflict, the former delivers relatively many slow, correct responses and the latter
contributes relatively many fast errors, leading to on average faster errors. In case of
alignment, the two processes favor correct responses, but by (P) the fast, automatic pro-
cess contributes more of them than the slow, deliberative one, hence in expected terms
correct responses end up being on average faster. In other words, in case of alignment,
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process I acts as a quick and efficient shortcut to identify the correct answer while the
less-consistent process D contributes relatively more (slow) errors. Hence, conditional
on an error being observed, it is more likely that the response is generated by the slower
process D.

Formally, it is worth noticing that prediction (T1) does not actually require assump-
tion (P). Previous, more specific versions of Theorem 3 have been presented in Achtziger
and Alós-Ferrer (2014) and Alós-Ferrer (2018) (where the processes were assumed to be
DDMs). In the present context, the importance of Theorem 3 relies on the fact that it
predicts when errors should be expected to be (on average) fast or slow, depending only
on observables. Specifically, the prediction will be applicable within any experiment or
decision task where the researcher has identified two relevant decision processes, one of
which can be reliably assumed to be more automatic than the other, and the experimen-
tal design allows to derive the most-frequent (favored) answers for each process. Under
these circumstances, the researcher can classify trials ex ante into conflict and alignment,
and aggregate the data conditional on that classification.

2.3 Extended Model I: Conflict Detection and Non-Decision Time

As observed above, Theorem 1 predicts a slow-down of correct responses under conflict
compared to alignment which parallels and generalizes the well-known “Stroop Effect”
(Stroop, 1935; MacCleod, 1991), but it does so without assuming that this response-time
effect arises due to the involvement of time-consuming central executive functions of the
brain related to the detection and resolution of conflict. There is, however, evidence for
the latter functions, which have been linked to early activity in the Anterior Cingulate
Cortex (see, e.g., Nieuwenhuis et al., 2003; De Neys et al., 2008; Achtziger et al., 2014).
Thus, it is worth considering how to extend the model to account for these additional
factors.

Let i ∈ {A,C} denote alignment or conflict, respectively, and add a non-decision
time ti to the response time which depends on conflict vs. alignment and is such that
tC ≥ tA, thus reflecting a stronger involvement of central executive functions in case of
conflict. At the same time, since conflict detection enables the inhibition of automatic
responses, an extended model should distinguish the probability of the latter depending
on conflict or alignment, i.e. replace the process-selection probability ∆ with ∆i while
assuming ∆C ≤ ∆A. All our previous predictions hold in this extended model (see
Appendix).

Theorem 4. Consider the extended model and assume (R), (P), tC ≥ tA, and ∆C ≤
∆A. Then (D1), (D2), (T1), and (T2) hold.

The intuition is as follows. First, predictions (T1) and (T2) are conditional on conflict
or alignment, respectively, and thus are unaffected by the distinction between ∆C and
∆A or the addition of case-specific non-decision times. The generalized-Stroop prediction
(D1) still holds because the effect captured in Theorem 1 and the slowdown implied by
tC ≥ tA go in the same direction. The fact that ∆C ≤ ∆A simply reduces the percentage
of correct responses which accrue to the fast, automatic process in case of conflict, and
hence also contributes to the overall trend. Prediction (D2) does not involve response
times, and thus the only change is the additional assumption that ∆C ≤ ∆A. However,
since the automatic process is more internally consistent than the deliberative one by
(P), in case of alignment the larger probability of the former being selected results in a
larger percentage of correct responses, thus confirming the original result. In particular,
if (R) did not hold because the two processes are indistinguishable in terms of response
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times, RD = RI , and even if (P) does not hold, (D1) (and of course also (D2)) is still
predicted as long as tC ≥ tA holds strictly.

Corollary 1. Consider the extended model and assume RD = RI , tC > tA, and ∆C ≤
∆A. Then (D1) and (D2) hold.

This extension of the model is straightforward. However, it disciplines the results in
sensible ways. For instance, an analogous proof to that of Theorem 1 shows that the
expected response time of errors in case of conflict is strictly shorter than the expected
response time of correct responses in case of alignment. However, this prediction does
not necessarily hold in the extended model, since non-decision times are longer in case of
conflict and hence the comparison of total response times would be undetermined. Thus,
even though one could have formulated this additional prediction in the original model,
we consider it unwarranted in general in the sense that it would not survive natural
extensions.

3 Results (Binary Choice)

We examined the recent psychological literature and collected 20 datasets (total N =
2, 792; 22 individual publications) involving 31 different experimental tasks which can be
described in terms of dual, interacting processes and for which (i) choice and response
time data was available, and (ii) conflict and alignment could be identified in the dataset.
None of the studies was designed to test the predictions of our model. Some of the
datasets combine several studies using similar tasks, and some of them contain data on
a single study employing several experimental tasks. Hence, we will discuss (and number
them) in terms of the paradigms (Dataset 1 to Dataset 21). In several cases, the studies
include treatments warranting separate analysis; in those cases, we differentiate the data
by adding a letter to the numeral, e.g. 1a–1c.1 This results in 31 different tests of each
of our predictions.

The first six columns of Table 1 list the dataset, research article or articles (authors,
year, journal), domain, and broad type of experimental task used (for the treatment if
appropriate). The Section “Description of Studies: Binary Choice” below briefly de-
scribes each study and how it is encompassed by our model. Five of the datasets (1–5)
belong to the area of cognitive control and include Stroop, Simon, and Flanker tasks,
plus a Cued Flanker variant and a Hybrid Stroop-Simon design. The next four (6–9) con-
cern attention and cover discrimination tasks employing Gabor patches, kinematograms,
random-dot motion, and large flickering checkerboards. Three further datasets (10–12)
arise from studies in social cognition and include automatic imitation of bodily ges-
tures and two forms of perspective taking (involving numerosity and spatial orientation,
respectively). The next three (13–15) concentrate on memory and involve word recogni-
tion, memory associations (conjoint recognition), and availability. Two further datasets
(16–17) cover decision-making tasks, namely syllogistic reasoning, base-rate probabilistic
judgments, and value-based decisions. Datasets 18–21 concern non-binary choice tasks
and are discussed in the Section “Beyond Binary Choice” below (column “Bin.” in Ta-
ble 1 shows whether the dataset involves binary choices or not). Some of the datasets
include neutral trials (column “Ne.”), which are analyzed in a later section.

1Dataset 9 consists of the data of three previous publications, which employ closely-related paradigms
and are analyzed as 9a–9c. A third task in Dataset 16 was different enough (different paradigm with
non-binary choice) to label it as a separate dataset (21).
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D Authors Year Journal Domain Task Bin. Ne. N D1 D2 T1 T2

1a Liefooghe et al. 2019 JEP: LMC Cogn. Control Stroop Y N 275 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

1b Reinforced Associations Y N (275) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

1c Derived Associations Y N (275) ∗∗∗ ∗∗∗ n.s. n.s.

2 Gyurkovics et al. 2020 JEP: General Simon Task Y N 108 ∗∗∗ ∗∗∗ n.s. ∗∗∗

3 Weissman 2019 JEP: LMC Hybrid Stroop-Simon Y N 90 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

4 Luna et al. 2020 JEP: HPP Flanker Y N 92 ∗∗∗ ∗∗∗ ∗ ∗∗∗

5a White & Curl 2018 Comp.Brain&Beh. Cued Flanker: No cue Y Y 123 ∗∗∗ ∗∗∗ ∗∗∗ n.s.

5b Alerting cue Y Y (123) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

5c Orienting cue Y Y (123) ∗∗∗ ∗∗∗ ∗∗∗ n.s.

6 Denison et al. 2018 PNAS Attention Gabor Patches Y Y 12 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

7 Evans et al. 2017 Sci.Reports Kinematogram Y N 70 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

8a Heathcote et al. 2019 J.Math.Psy. Checkerboards: Prob. Y Y 32 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

8b Checkerboards: Reward Y Y (32) ∗ ∗∗ n.s. ∗∗∗

9 Hu & Rahnev 2019 Cognition
9a Bang and Rahnev 2017 Sci.Reports Gabor Patches Y Y 30 ∗∗∗ ∗∗∗ ∗ ∗∗∗

9b de Lange et al. 2013 J.Neurosci. Moving Dots Y Y 22 ∗∗∗ ∗∗ ∗∗∗ ∗∗∗

9c Rahnev et al. 2011 J.Neurosci. Moving Dots Y Y 21 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

10a Ramsey et al. 2019 JEP: HPP Social Cogn. Imitation: Low Load Y N 172 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

10b Imitation: High Load Y N (172) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

11 O’Grady 2020 Quart.J.Exp.Psy. Perspective Taking Y N 30 ∗∗∗ ∗∗∗ ∗∗ ∗∗∗

12 Muto et al. 2019 Cognition Perspective Taking Y N 36 ∗∗∗ ∗∗∗ ∗∗∗ n.s.

13a Charoy & Samuel 2020 JEP: LMC Memory Word Recognition, Exp.1 Y N 27 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

13b Word Recognition, Exp.2 Y N (260) ∗∗∗ ∗∗∗ ∗ ∗∗∗

14 Brainerd & Lee 2019 JEP: LMC Conjoint Recognition Y N 185 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

15 Glöckner & Bröder 2014 J&DM Availability Judgments Y Y 61 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

16a Raoelison et al. 2020 Cognition Dec. Making Syllogisms Y Y 260 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

16b Base-Rate Questions Y Y (260) ∗∗∗ ∗∗∗ ∗ ∗∗

17 Fontanesi et al. 2019 Psych.Bull.&Rev. Value-Based Decisions Y Y 27 ∗∗∗ ∗∗∗ n.s. ∗∗∗

18 Steyvers et al. 2019 PNAS Cogn. Control Moving Leafs N Y 1000 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

19 Dignath et al. 2019 JEP: HPP Cogn. Control Stimulus Recognition N N 87 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

20 Schmidt & Weissman 2014 PLoS One Cogn. Control Prime-Probe Arrow N N 32 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

21 Raoelison et al. 2020 Cognition Dec. Making Cognitive Reflection N Y (260) ∗∗ ∗∗∗ ∗∗ n.s.

Table 1: List of datasets (D) analyzed in the manuscript, and summary of the Wilcoxon
signed-rank tests (WSR) testing the four predictions of the model. “Bin.” indicates
whether the task is binary and “Ne.” whether it includes neutral trials (both Y/N). N
is the dataset size (number of participating subjects; numbers in brackets indicate the
same subjects as in other tasks within an experiment). ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .1.

Predictions (D1), (T1), and (T2) involve comparisons of response times, while predic-
tion (D2) compares proportions of correct answers. In all cases, normality assumptions
are unwarranted, since proportions belong to the interval [0, 1] and response times are
nonnegative. All four predictions, however, can be tested for each individual study or
treatment by means of non-parametric Wilcoxon signed-rank (WSR) tests, which do not
require distributional assumptions. The last five columns of Table 1 display the size of
the dataset (N) and the significance level reached by the corresponding WSR test for
each of the four predictions, for a total of 124 tests. The Appendix contains details of the
individual tests, robustness analyses, and further comparisons as appropriate for each
dataset. As can be seen from Table 1, all four predictions enjoy overwhelming support
across the datasets, with the vast majority of tests (104 of 124) being significant at the
1% level. Also, in a few cases where some results are not significant (1c, 8b), those
are associated with particularly-weak manipulations (see comments for the individual
studies in the next section).

Nonparametric tests, however, lose the information contained in the cardinal vari-
ables we use (response times and proportion of correct answers). To recover this infor-
mation and better illustrate the results, the left-hand side of Figures 1–4 uses a forest
plot representation to display the actual difference in response times or proportions of
correct answers as given in predictions (D1), (D2), (T1), and (T2), for all 31 studies
and treatments. The figures include the traditional 95% confidence intervals (assuming
a normal distribution of the difference variables for illustration), and a vertical line at
zero for ease of interpretation. Figures 1, 3, and 4 refer to predictions (D1), (T1), and
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Figure 1: Prediction (D1) across all 31 studies/treatments. Response time of correct
choices in conflict vs. alignment and relative effect sizes for the non-parametric tests.

(T2), respectively, and hence the horizontal axis of their left-hand sides corresponds to
time differences and is measured in seconds. Figure 2 refers to prediction (D2) and hence
the horizontal axis of its left-hand side corresponds to differences in proportions (-1 to
1). In all cases, the representation allows to see the absolute size of the differences in
response times or proportions and compare them across studies.

To demonstrate the magnitude of the effects, the right-hand side of Figures 1–4
displays the effect sizes and corresponding 95% confidence intervals for the WSR tests
in Table 1. The effect size of a WSR test, r, is considered small for r ∈ [0.1, 0.3],
medium for r ∈ [0.3, 0.5], and large for r > 0.5 (Cohen, 1988; Rosenthal, 1994). To
obtain confidence intervals for our non-parametric tests, we follows the bias-corrected-
and-accelerated (BCa) bootstrap method of Efron (1987) (see also Kirby and Gerlanc,
2013, for details). The sample sizes of the datasets we consider are generally enough to
provide precise confidence intervals (Algina et al., 2006). We set the number of resamples
to 5,000, far in excess of the minimum number of 999 recommended in Davison and
Hinkley (1997). We remark that, if there is no ambiguity in the test, in particular if all
signs in a non-parametric test are positive (or negative), then one obtains point estimates
for the effect size instead of a proper interval. This occurs for 9 tests in our dataset (5
of them concerning (D1)).

The figures further illustrate that the datasets lend overwhelming support to our
predictions. Figures 1 and 2 summarize the magnitude of the effects for predictions
(D1) and (D2), respectively. They show that the RT of correct answers and the error
rates are systematically larger under conflict than under alignment, with generally large
effect sizes. Figures 3 and 4 display the corresponding results for predictions (T1) and
(T2) and show that the expected asymmetry is strongly supported for the data. That
is, errors are almost universally faster than correct responses under conflict but slower
under alignment, with mostly medium to large effect sizes in both cases.
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Figure 2: Prediction (D2) across all 31 studies/treatments. Error rates in conflict vs.
alignment situations and relative effect sizes for the non-parametric tests.

Figure 3: Summary of all the paradigms. Response times of errors vs. correct choices in
conflict situations (T1).

4 Description of the Studies: Binary Choice

This section briefly describes the experimental tasks in each of the 21 datasets and
how they are encompassed by our model. Details on the individual tests and further
robustness analyses are in the Appendix.

4.1 Cognitive Control

Dataset 1: Stroop Effects and Derived Associations. Stroop-like effects can be
induced through direct reinforcement of stimuli (i.e., Shiffrin and Schneider, 1977), but
it is less clear whether derived, indirect associations (Sidman and Tailby, 1982) produce
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Figure 4: Summary of all the paradigms. Response times of errors vs. correct choices in
alignment situations (T2).

similar effects. Liefooghe et al. (2019) showed that Stroop-like effects can be induced
through automatized processes arising from either directly or indirectly reinforced asso-
ciations. In five studies (N = 275; pooled for our analysis), participants were trained
to establish and derive an association between a non-word string of characters and a
color-naming word. The non-words, together with actual words, were then used as dis-
tractors in a Stroop task (Stroop, 1935). For reinforced associations, some non-words
were directly reinforced, establishing an association to a color. For instance, participants
were trained to select PLESK in the presence of RED and KLAMF in the presence of
GREEN. For derived associations, other non-words were indirectly associated to a color.
For instance, participants were trained to select SMELK in the presence of PLESK
and GILPT in the presence of KLAMF. A Stroop task followed the association training
phases, which used either color names, reinforced associations, or derived associations as
distractors. For instance, the word GILPT (associated with KLAMF, in turn associated
with GREEN), could be printed in red in an incongruent trial. For each type of stimuli,
half of the trials were congruent and the other half were incongruent. An answer is
correct if the participant reported the print color of the word, and an error otherwise.
In each trial, there were always only two possible answers.

In our terms, the deliberative decision process is to assess the print color of the word.
The alternative process in this task is to indicate the meaning of the word, which might
be a fully automatic answer (for color names), an automatized one (for reinforced as-
sociations), or an indirect, presumably multi-step one (for derived associations). Thus,
congruent trials were in alignment and incongruent trials in conflict, although the cogni-
tive characteristics of the involved alternative process obviously differ depending on the
distractor.

All predictions hold for normal Stroop trials and also for trials with reinforced asso-
ciations, demonstrating that the effects can arise with automatized processes as well as
with automatic ones. The predicted relations only hold partially for trials with derived
associations, where the automatic nature of the alternative process is less clear. Recall
that Corollary 1 predicts D1 and D2 (but not T1 and T2) if two different processes are
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at work but they do not differ in terms of response times (or internal consistency). This
is exactly what happens in this case. Specifically, D1 and D2 hold, but T1 and T2 do
not.

Dataset 2: Simon Task. Gyurkovics et al. (2020) investigated how the ability to
dynamically adjust cognitive control develops during adolescence. Their research tested
the predictions of multiple models of human development (see, e.g., Casey et al., 2005;
Steinberg, 2008) which state that cognitive control is still maturing and improving in
this stage of life. Participants from four age groups (12 − 13, 14 − 15, 18 − 20, and
25 − 27 years old; N = 118) completed variants of the Flanker, Simon, and Go/No-
Go tasks. The latter does not deliver response times in the No-Go case, and error
rates in the Flanker task were extremely small (less than 0.5% and 1.0% in congruent
and incongruent trials, respectively). We reanalyze data from their Simon task, where,
interestingly, Gyurkovics et al. (2020) found no substantial changes through adolescence.
In this task, participants had to identify the direction that a single arrow was pointing
to (left, right, up, or down). The arrow could be presented either above, below, to the
left of, or to the right of the center of the screen, but this location was not relevant for
the answer. Trials were congruent if the location and the direction coincided, e.g. an
arrow pointing right located to the right of the screen, and incongruent otherwise (those
were constrained to left-right or up-down cases). An answer is correct if the participant
indicated the direction given by the arrow, and an error otherwise.

The deliberative decision process is to indicate the direction actually given by the
arrow, while the alternative process is to report the location of the target instead of its
direction. In our terms, congruent trials were in alignment, and incongruent trials in
conflict. All errors in conflict were intuitive, that is, they followed the location of the
arrow instead of its direction (nobody reported “up” on seeing a right-pointing arrow
on the left of the screen).

All predictions hold for the Simon task but for response times in alignment (T2).
This might be because in alignment the overwhelming majority of participants had zero
error rates and hence the sample size for this test is greatly reduced. The comparison
testing T2 still shows that errors are slower than correct answers in this case, but it is
not statistically significant.

Dataset 3: Hybrid Stroop-Simon Task. There is an active, ongoing debate on
whether cognitive control is domain-specific (i.e., Egner, 2008) or domain-general (i.e.,
Botvinick et al., 2001). Weissman (2019) introduced a hybrid Stroop-Simon task to
address this question, and argued in favor of a domain-general interpretation. In this
hybrid task, ninety participants (in two pooled experiments) were presented with one
of four words naming colors (red, blue, green, and yellow) and were told to identify
the color in which the word was printed, while ignoring both its location and meaning.
Participants provided answers by pressing one the (color-coded) keys left (red), right
(blue), up (green) and down (yellow), which matched the four locations where the stimuli
could appear on the screen. Stimuli were paired in the sense that the four combinations
of the words red and blue and the print colors red and blue always appeared left or right,
and the four combinations of the words green and yellow and the print colors green and
yellow always appeared up or down (16 total possible stimuli). An answer is correct if
the participant indicated the key corresponding to the print color of the word, and an
error otherwise. Due to the pairing of stimuli, all errors in conflict were intuitive, that
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is, they followed the location of the stimuli or the meaning of the word (there were no
up/down responses for red-blue stimuli or left-right responses for green-yellow stimuli).

The normative decision process is to press the key corresponding to the color of
the word, ignoring its position and its meaning. However, there are two alternative
(intuitive) processes in this task, corresponding to the meaning of the printed word
(Stroop) or its position on-screen (Simon). Trials can be of four types in this hybrid
task. Full alignment corresponds to trials where both the on-screen position and the
word’s meaning align with the print color. Full conflict corresponds to trials where the
on-screen position and the word’s meaning are aligned, but contradict the print color.
Simon conflict corresponds to trials where the on-screen position contradicts the print
color, but the latter is aligned with the word’s meaning. Last, Stroop conflict corresponds
to trials where the word’s meaning contradicts the print color, but the latter is aligned
with the on-screen position. Note that, in this sense, Simon conflict is Stroop alignment
and Stroop conflict is Simon alignment.

The predictions of the model only apply when the two alternative intuitive processes
are aligned, and hence can be summarized as one. This corresponds to full alignment
and full conflict trials, where we find full support for our hypotheses. For Simon-conflict
and Stroop-conflict trials, the model does not apply a priori, since conflict with one alter-
native process is actually alignment with the other one. Although we had no predictions
for those situations, it is still interesting to examine them (see Appendix for details).
Simon conflict (hence Stroop alignment) trials behave as one would expect for the case
of conflict. These results suggest that the process underlying the Simon effect might be
dominating the one responsible for the Stroop effect.

Dataset 4: A Standard Flanker Task The cognitive interference literature has
provided mixed evidence on whether simultaneously performing several tasks has a detri-
mental effect on cognitive control (i.e., Lavie et al., 2004; Salvucci and Taatgen, 2008)
or, on the contrary, it can boost performance (i.e., Kim et al., 2005; Gil-Gómez de
Liaño et al., 2016). To investigate this issue, Luna et al. (2020) study an otherwise-
standard Flanker task with concurrent working memory load, implemented by directing
attention to infrequent, displaced on-screen stimuli, and show that interference can both
increase and decrease cognitive performance depending on the attentional set. In this
task, ninety-two participants (belonging to three similar experiments) had to detect the
direction of a central arrow (left/right), flanked by two distracting arrows on each side.
In congruent trials, the target and Flankers pointed in the same direction, while in incon-
gruent trials they pointed in opposite ones. In around one third of the trials, the target
was slightly displaced either horizontally (leftward/rightward from the central position)
or vertically (upward/downward).

An answer is correct if the participant indicated the direction given by the central
arrow, and an error otherwise. The deliberative decision process is to indicate the
direction of the central arrow, while the alternative process is to report the direction
of the Flankers. Congruent trials were in alignment, and incongruent in conflict. Our
predictions find full support in this context, independently of the working memory load
manipulation.

Dataset 5: Attention and the Flanker Task Smith et al. (2004) show that pro-
viding cues can increase the speed of responses and reduce interference from irrelevant
stimuli. Following this result White and Curl (2018) study a cued version of the Flanker
task (the Attentional Network Test) and show that alerting cues lead to faster encoding,
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improved perceptual processing, and increased attentional focusing. Their experiment
(N = 123) relied on a Flanker task where a central, target arrow might point left or
right, and four Flankers (two on each side) might point in the same direction as the
target (congruent trials), the opposite direction (incongruent trials), or be absent en-
tirely (neutral trials). The stimuli randomly appeared either up or down, that is, either
in the upper or the lower part of the screen. To prompt attention, each trial was pre-
ceded by one of three cueing conditions: no cue, an alerting cue in the form of two
centrally-positioned asterisks, one up and one down, or an orienting cue in the form of a
centrally-placed asterisk shown either up or down, marking the part of the screen that
the stimuli would later appear on.

An answer is correct if the participant indicated the direction given by the target
stimuli, and an error otherwise. The deliberative decision process is to indicate the di-
rection of the target stimuli, while the alternative process is to report the direction of the
Flankers. Congruent trials, where the target and Flankers point in the same direction,
were in alignment, incongruent trials were in conflict, and neutral trials correspond to
our definition of neutral, where the alternative process is not triggered at all (we will
return to neutral trials in a later section). Our hypotheses find full support for the
alerting cue condition. In the no cue and orienting cue conditions, all predictions are
supported with the exception of (T2), where differences are not significant.

4.2 Attentional Processes

Dataset 6: Attention and Perceptual Decisions Recent work has suggested that
optimal choice thresholds in categorization tasks might be adjusted as a function of the
uncertainty in the prior distribution (Qamar et al., 2013; Adler and Ma, 2018). Specifi-
cally, it has been suggested that humans take into account both sensory measurements
and the associated, underlying uncertainty (Knill and Richards, 1996). In support of
this view, Denison et al. (2018) showed that perceptual decisions in natural vision are
improved by adjusting for attention-dependent uncertainty. In their experiment, N = 12
participants were shown drifting Gabor patches and had to decide whether they had been
sampled from a narrow Gaussian distribution (mean 0◦, SD = 3◦) or a wider one (with
the same mean but SD = 12◦). They were previously trained to recognize the two cate-
gories with an accuracy of at least 70%. The normatively optimal answer, derived from
Bayes’ rule, is to report the narrow category for stimuli in the interval [−5.16◦; 5.16◦],
and the wide category otherwise (this yields the maximum obtainable accuracy of 80%).
We say that an answer is correct if it followed this criterion, and an error otherwise.

In each trial of the actual task, participants were shown four Gabor patches simul-
taneously for 300 ms, drawn independently and with equal probability from one of the
two distributions. After the patches disappeared, one of the four locations (selected
randomly) was indicated with a fixation cross and the participant had to categorize the
corresponding patch. Attention was manipulated on a trial-by-trial basis by using a cue
before the patches appeared. In 2/3 the trials, the cue matched the actually-relevant
patch (valid cue). In 1/6 of the trials, the cue was misleading and pointed to an irrele-
vant patch (invalid cue). In the remaining 1/6 of the trials, there were four cues marking
all four locations (neutral cues).

The deliberative decision process in this case would be to retrieve the actually-
relevant stimulus from memory and categorize it, since the cue is ex post irrelevant.
This is clearly an effortful strategy heavily relying on working memory. An alternative,
simpler decision process would specify to focus on the attentional cue and categorize
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the corresponding patch. Reliance on this latter process might be seen as adaptive and
efficient, as subjects knew that in the majority of trials the cue would be valid.

In our terms, trials with valid cues are always in alignment, as both decision processes
make the same prescription. Invalid trials are in conflict, unless, by chance, both the
cued patch and the actually-relevant one would be categorized identically. Thus, we
define conflict trials as those where the cue was invalid and the two processes actually
made different prescriptions. Those are 6.08% of all trials. Further, trials with neutral
cues are also neutral in our terms, since the simpler process is not actually triggered.
Our predictions find full support in this context.

Dataset 7: Perceptual Decisions and Initial Cues Evans et al. (2017) show that
decision processes in perceptual decision making show little evidence of decay in evidence
accumulation and are hence more consistent with received drift-diffusion models than
with alternative ones where decisions are based on only the most recent evidence (Kiani
et al., 2008; Tsetsos et al., 2012). Seventy participants made decisions about the direction
of motion (left or right) in a random dot kinematogram (RDK). The stimuli included a
brief initial pulse of motion, which was in the direction opposite to the subsequent motion
for half of the trials (incongruent) and in the same direction for the rest (congruent
trials), but the answer was provided after the kinematogram’s movement stopped. An
answer is correct if it matched the general motion in the RDK (left or right), and an
error otherwise.

The deliberative decision process is to assess the general motion in a Bayesian way,
which, since the initial pulse was very brief, should coincide with the direction of move-
ment in the rest of the trial. An alternative process is to report the direction of movement
of the initial pulse. This is akin to conservatism in belief updating tasks, since the ini-
tial pulse can used to formulate a prior, and conservatism dictates to disproportionally
(over)weight the prior. In our terms, congruent trials are in alignment, and incongruent
trials in conflict. Our predictions are again fully supported in this context.

Dataset 8: Judging Majority Colors Heathcote et al. (2019) study how beliefs and
utilities contribute to the formation of response bias following hypotheses derived from
Vickers (1979) as well as using Bayes factors as prescribed in Prince et al. (2012) and
(Davis-Stober et al., 2016). Participants (N = 32) were presented with large (32 × 32)
checkerboards filled with squares of two possible colors (blue and orange), whose posi-
tions changed 20 times per second. They had to indicate the majority color (displayed
on either 52% or 54% of the squares). Trials were in three types of blocks. In probability-
manipulation blocks, participants were given a prior in the form of which color would
correspond to the majority in most (75%) trials. In reward blocks, majority colors oc-
curred equally often, but one color was rewarded with three times as many points as
the other if the answer was correct (however, points did not influence rewards, as par-
ticipant remuneration was not performance-based). In unbiased blocks, majority colors
occurred equally often and both colors were associated with the same number of points.
An answer is correct if the participant reported the actual majority color for the trial,
and an error otherwise.

The deliberative process is to assess which is the actual majority color (which might
be particularly noisy in this paradigm). In probability-manipulation blocks, an alterna-
tive process is conservatism, which simply focuses on the (asymmetric) prior and reports
the modal color in that prior. In reward blocks, an alternative process might be to
focus on the most-rewarded color, although this might be speculative since rewards were
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hypothetical. In unbiased blocks, there are no candidates for alternative processes. In
our terms, trials in unbiased blocks are neutral (and we will return to them in a later
section). In probability-manipulation blocks, trials where the actual majority color co-
incides with the most frequent according to the prior are in alignment, and other trials
are in conflict. In reward blocks, trials where the actual majority color coincides with
the most-rewarded color are in alignment, and other trials are in conflict.

For probability-manipulated blocks, our predictions find full support. For reward
blocks, all predictions are supported except for T1. Since the experiment was not actually
incentivised, this might suggest that differences in the magnitude of hypothetical rewards
might have played a modest role.

Dataset 9: Predictive Cues and Categorization A large literature has studied
response bias in categorization tasks, and specifically how responses depend on individual
stimulus sensitivity and the characteristics of the stimuli (i.e., Rahnev and Denison,
2018; Summerfield and De Lange, 2014; Wexler et al., 2015). Hu and Rahnev (2019)
show that predictive cues are able to reduce but not to completely eliminate intrinsic
response bias in (perceptual) categorization judgements. For this purpose, the authors
re-analyze data from three previous experiments (thirty, twenty-two, and twenty-one
participants, respectively). In the first experiment (Bang and Rahnev, 2017), subjects
indicated whether the overall direction of a series of 30 briefly-presented Gabor patches,
with orientations sampled randomly from a normal distribution, had an overall tilt to
the left or to the right from the vertical. Two thirds of the trials included a cue (either
before or after the main stimulus) indicating which direction was more likely (66.67%
probability). In the second experiment (de Lange et al., 2013), subjects indicated the
direction of motion (either contracting or expanding) of white dots presented on a black
annulus. In half of the trials, cues signaling contraction or expansion were presented.
The predictive cues correctly indicated the upcoming motion direction on 75% of the
trials. The remaining trials included no cue. In the third experiment (Rahnev et al.,
2011), subjects indicated the direction of motion (either left or right) of white dots
presented on a black annulus. Two thirds of the trials included cues, which were valid
75% of the time.

In all three experiments, an answer is correct if the participant recognized the direc-
tion of the stimuli, and an error otherwise. The deliberative decision process in this case
is to accumulate the evidence provided by each patch and extrapolate the overall direc-
tion. An alternative process is simply to follow the cue. All trials were cues were valid
are in alignment, trials with invalid cues, where the cue indicated the wrong direction,
are in conflict, while trials without cues are neutral situations (we will return to those
in a later section). Our predictions are confirmed in all three experiments.

4.3 Social Cognition

Dataset 10: Automatic Imitation of Social Gestures Widespread evidence in-
dicates that imitative tendencies are highly automatic, especially when they refer to
mimicking bodily gestures of others (see Cracco et al., 2018, for a meta analysis of 226
experiments). Ramsey et al. (2019) further tested the assumption that the mental pro-
cesses underpinning imitative behavior are relatively automatic by showing that they are
unaffected when subjects are placed under cognitive load. In three experiments (58, 55,
and 59 subjects, respectively), participants were required to horizontally lift either the
index or the middle finger of their right hands in response to seeing the number “1” or
“2” on screen, respectively. The numbers were displayed concurrently with a (mirrored)
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hand with either finger lifted. An answer is hence correct if the finger corresponding to
the displayed number was lifted, and an error otherwise. The task took place during
the retention interval of a cognitive load manipulation (memorize an image and report
it later), which used different stimuli in each experiment.

The deliberative decision process in this setting is to lift the finger corresponding
to the displayed number. The alternative process, which can be assumed to be highly
automatic in view of the literature, is to spontaneously imitate the movement of the
displayed hand. In our terms, trials where the displayed number and the displayed hand
prescribed the same movement (e.g., a lifted index finger next to a “1”) are in alignment,
while trials where they prescribed different movements (e.g., a lifted middle finger next
to a “1”) are in conflict. Our predictions are also confirmed in this setting, independently
of the cognitive load treatment.

Dataset 11: Perspective Taking (Numerosity) A recent literature has investi-
gated the mentalizing processes behind perspective taking (i.e., Conway et al., 2017;
Freundlieb et al., 2016, among others). Among these contributions, O’Grady et al.
(2020) show that humans acquire others’ perspectives quickly, unconsciously, and in-
voluntarily, but argue that perspective-taking is not completely automatic in the sense
of being purely stimulus-driven. We reanalyze data from the “explicit” condition in
their Experiment 1 N = 30), which contrasted egocentric and altercentric perspectives
(the other conditions and experiments lacked this contrast and cannot be analyzed in
our terms). In each trial, participants first observed a single-digit number, and then a
screen containing a human-like avatar, a set of red balls, and some Lego blocks which
might block the avatar’s view. Then they were asked whether a previously-seen number
matched the number of balls, with some trials referring to the balls visible to the partici-
pant, and the rest referring to the balls visible to the avatar. In some trials (congruent),
the avatar and the participant could see the same number of balls. In other trials (incon-
gruent), the line of sight of the avatar was partially blocked and the participant could
see more balls than the avatar.

An answer is correct if it reflected the prescribed perspective (whether or not the
given number corresponded to the number of balls seen by the participant or avatar as
prescribed), and an error otherwise. The deliberative decision process is to determine the
answer based on the indicated perspective (egocentric or altercentric). An alternative
process for this task, however, is to base the answer on the own perspective only. In
our terms, congruent trials are in alignment, and incongruent trials in conflict. Our
predictions find full support in this context.

Dataset 12: Perspective Taking (Direction) A broad literature has explored
the cognitive mechanisms of spatial perspective taking (i.e., Surtees et al., 2013, 2016),
but applications to non-human, non-anthropomorphic objects are scarce. Muto et al.
(2019) show that whether a non-anthropomorphic object is symmetric or not strongly
influences spatial perspective-taking processes in humans. Participants were shown an
object (chairs or humanoid figures) surrounded by four pillars, one of them, the target,
painted blue (the other three being white). They were asked to indicate the location of
a target from the point of view of the object, with some trials asking front vs. back and
some asking left vs. right. Stimuli were created by rotating the whole room (reference
object and pillars) by different angles, creating situations where the point of view of the
reference object coincided with that of the participant (congruent), and situations where
they differed, making perspective-taking necessary (incongruent). Muto et al. (2019)
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argue that perspective-taking is strongly facilitated when the geometric asymmetry of
the reference object provides a frame of reference (e.g., judge front-back for a chair with
backrest). We consider their data when this was not the case, i.e. when the stimuli was
symmetric in the direction required by the question (e.g., left-right but not front-back
questions for a chair). This happened in half of the trials of their experiments 1, 4,
and 5 (Experiments 2 and 4 contained asymmetric objects only) for a total of thirty-six
participants.

An answer is correct if the participant reported the position of the target from the
point of view of the reference object, and an error otherwise. The deliberative decision
process is to judge the location of the target by taking the perspective of the reference
object. An alternative process, however, is to judge the location from an egocentric
perspective only. In our terms, congruent trials were in alignment, and incongruent
trials in conflict. Our predictions find full support in this context, except for prediction
T2 where differences are not significant.

4.4 Memory

Dataset 13: Spoken Word Recognition An important question in perception and
linguistics is how the perceptual system maps two acoustically different signals to the
same underlying word, and in particular how existing phonological variants of words are
processed (Lahiri and Marslen-Wilson, 1991; Gaskell and Marslen-Wilson, 1996). The
literature has shown a tight coupling between exposure frequency and the probability
of recognizing variations in word pronunciations (e.g., Pitt et al., 2011; Sumner and
Samuel, 2009). Charoy and Samuel (2020) study the effect of orthography (in particular
omission of sounds when words are pronounced) in the recognition of spoken words.

Seventy-seven participants learned to associate new spoken words with pictures of
unusual objects, while hearing the words in a reduced form as typical of conversational
speech (meaning some sounds are omitted). The words were paired with either a spelling
consistent with the reduced pronunciation, a more canonical spelling, or no spelling.
Then they worked through a picture-name matching task, where they indicated whether
a spoken word matched a displayed picture or not. In congruent trials, the pictures were
presented together with words in the reduced spoken form which had been previously
learned. In incongruent trials, words were pronounced in a canonical way (closer to
the normative, orthography-based pronunciation) of those words. There were also filler
trials with control words.

An answer is correct if the participant recognised the picture-name pair, and an error
otherwise. The deliberative decision process in this case is to retrieve from memory the
word-picture association while keeping in mind pronunciation rules (i.e., the existence
of and differences between reduced vs. canonical forms). This should lead listeners to
accept the canonical pronunciation derived from orthographic rules, even though that
form of the word has not been previously heard. An alternative process is to retrieve from
memory the phonological association only, based on the reduced pronunciation which
was actually learned. This should lead listeners to reject the canonical pronunciation.
In our terms, congruent trials are in alignment, and incongruent trials in conflict. Our
predictions find full support in this context.

Dataset 14: Recollection Processes Widespread evidence suggests that recollec-
tion is supported by non-specific feelings of familiarity which are recovered more rapidly
than the realistic details that support the recollection of particular items Atkinson and
Juola (1973); Mandler (1980). Formalising this notion, Brainerd and Lee (2019) follow
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an explicit dual-process approach to compare familiarity and recollection processes in
a memory paradigm (a conjoint-recognition task), and show that the relative speeds of
different retrieval processes depend on the relation between the stimuli and previously-
learned words. Participants (one-hundred and eighty-five participants in six very similar
experiments) first studied lists of interrelated words. In the actual task, subjects ac-
cepted or rejected new words according to one of three criteria. In Verbatim trials
subjects should accept previously-learned words and reject all others, independently of
whether they were conceptually related to the learned ones or not. In Gist trials subjects
should accept words related to those learned and reject unrelated ones and actually-
learned words. In Verbatim-Gist trials subjects should accept both previously-learned
and related words, and reject new, unrelated ones.

An answer is correct if the participant accepted the word as specified in the active
criterion, and an error otherwise. The deliberative decision process in this case is to
recollect the studied words and follow the specified criterion to decide whether to accept
a word or not. An alternative process is to accept all words related to the studied theme,
in particular not distinguishing between actually-learned words and thematically-related
ones. In our terms, Verbatim trials were in alignment whenever either previously-learned
words (which should be accepted) or new, unrelated words (which should be rejected)
were presented, and in conflict if the stimuli were new but related words. Gist trials
were in alignment if the stimuli were either new but related words (which should be
accepted) or new, unrelated words (which should be rejected), and in conflict if they
were previously-learned words. Finally, all Verbatim-Gist trials were in alignment, as
the description of the deliberative rule coincides with the associative, automatic process.
Our predictions find full support in this context.

Dataset 15: Recognition Heuristic Glöckner and Bröder (2014) compare different
decision-making models for judgements involving memory-based information recogni-
tion, and in particular target the recognition heuristic (Goldstein and Gigerenzer, 2002;
Glöckner and Bröder, 2011). Participants (N = 61) decided which of two USA cities
had more inhabitants. Two sets of eight mid-sized cities were used, half of which were
mainly known (Miami Beach, Charleston, Oklahoma City, Buffalo, Salt Lake City, Rich-
mond, Albany, Orlando), while the other half were mostly unknown (Hialeah, Carson
City, Mobile, Tempe, Lansing, Trenton, Topeka, Stockton).

An answer is correct if the participant indicated the city with most inhabitants
among the two, and an error otherwise. The deliberative decision process in this case is
to retrieve information from memory to decide which city actually has more inhabitants.
An alternative process is the recognition heuristic, that is, basing the answer on whether
the city is recognized or not, hence equating higher familiarity with larger population. In
our terms, trials where a larger, known city was pitted against a smaller, unknown one
were in alignment while trials where a known but smaller city was compared to a larger
but unknown city were in conflict. Trials where the cities were either both known or
both unknown were neutral, and we will revisit them in a later section. Our predictions
are again fully supported.

4.5 Decision Making

Dataset 16: Syllogisms and Base Rates Time pressure has been extensively used
as a tool to manipulate the cognitive mode in decision making. In two experiments
(260 subjects in total), Raoelison et al. (2020) go beyond this approach by studying
decisions in reasoning tasks where a first choice given under time pressure (3s limit)
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can be corrected afterwards, and find a positive correlation between cognitive capacity
and correct answers under time pressure. We reanalyze the first, initial answer in those
decisions. The experiments in Raoelison et al. (2020) involved three kinds of tasks:
syllogisms, base-rate questions (see, e.g. Alós-Ferrer et al., 2016; Ludwig et al., 2020), and
cognitive-reflection items (Frederick, 2005). The first two were presented with binary-
answer formats (the third, with non-binary answers, is analyzed in the Section “Beyond
Binary Choice” below).

For the syllogisms, participants were asked to evaluate whether or not (yes/no) a
statement followed logically from a syllogistic-style reasoning (“All dogs have four legs.
Puppies are dogs. Does it follow that all puppies have four legs?” vs. “All dogs have
four legs. Puppies have four legs. Does it follow that all puppies are dogs?”). No-conflict
items were such that the conclusion followed logically (valid) and was also believable,
or the conclusion did not follow logically (invalid) and was unbelievable. Conflict items
were such that the conclusion was valid but unbelievable, or invalid but believable. Each
participant faced four conflict and four no-conflict items. Experiment 2 also included
four neutral items per participant, where the syllogism was stated in abstract terms
(“All F are H,” etc.) and hence the conclusion elicited no believability evaluation.

The base-rate tasks followed extreme versions of the lawyers-engineers problem of
Kahneman and Tversky (1972), where a stereotypical judgment might contradict the
stated prior probability (“There are 995 clowns and 5 accountants. Person L is funny. Is
Person L more likely to be a clown or an accountant?”). In no-conflict items, base rates
and stereotypical information cued the same response, and in conflict items they cued
different responses. As in the case of syllogisms, each participant faced four conflict and
four no-conflict items. Experiment 2 also included four neutral items per participant,
where the stereotypical association applied to both possible responses (e.g., being musical
for saxophone and trumpet players).

For syllogisms, an answer is correct if it reflects whether the final statement actually
follows logically from the initial ones, and an error otherwise. The deliberative decision
process is to evaluate the logical validity of the statements, while the alternative process
focuses only on believability of the final one. For base-rate questions, an answer is
considered correct if it is in agreement with the extreme prior, and an error otherwise.
The deliberative process is to focus on the prior, and the alternative one is to focus
on the stereotype. No-conflict items were in alignment, and conflict-items reflect our
notion of conflict. Neutral items, where the heuristic was not cued, correspond to our
concept of neutral situations and will be examined in a later section. Our predictions
hold both for syllogisms and base-rate questions, showing that even for more cognitively
demanding (and time-consuming tasks) we find evidence for dual-process effects.

Dataset 17: Reinforcement Learning A small number of recent contributions have
explored computational models describing both the processes underlying a single decision
and how those are influenced by subjective option values learned over time (e.g., Frank
et al., 2015; Pedersen et al., 2017). Among those, Fontanesi et al. (2019) study how
reinforcement influences learning in value-based decisions, with participants becoming
faster and more accurate for more dissimilar values and generally as the experiment
progressed, and decided faster for more attractive (i.e., overall more valuable) pairs of
options. During the experiment, each participant (N = 27) saw a total of twelve different
figures (in three blocks of four each) representing different reward options. Participants
chose between two of them in each trial. The payoffs of each option were not fixed but
varied and were approximately normally distributed. The mean rewards of the options in
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each block were 36, 40, 50, and 54 for options A, B, C, and D, respectively. The standard
deviation was 5 for all options. After each choice, participants saw both options’ rewards.
At the end of the experiment, the accumulated reward was paid to the participants.

An answer is correct if the participant chose the option with the highest expected
value, and an error otherwise. The deliberative decision process in this case is to choose
the option with the highest expected value. Because monetarily-relevant feedback was
provided to participants, a natural alternative process is reinforcement learning. In
particular, in its simplest form (win-stay/lose-shift) it prescribes to choose the same
option if it was successful (delivered a larger payoff than the alternative in that round)
and switch to another if it delivered a bad result (worse than the alternative). In our
terms, alignment situations are those where the choice in the last trial was successful and
is the correct choice in the current round, or where the previous choice was unsuccessful
and the same option is an error in the current trial. Conflict situations are those where
the past choice was successful but it is an error in the current trial, or where the previous
choice was unsuccessful but it is now the correct option. All those trials where past
choices are not among the available alternatives are neutral trials (and we will return to
them in a later section). Overall, 30.63% of the observations are classified as alignment,
15.07% as conflict, and 54.30% as neutral. Our predictions find support in this context,
except for T1, where differences are not significant.

5 Beyond Binary Choice

In this section, we extend the basic model beyond the binary case to allow for any
number of alternatives. First we show that all four predictions can be extended to the
general case. Then, we examine a few additional, non-binary paradigms to illustrate the
model’s applicability.

5.1 Extended Model II: The Multi-Alternative Case

Consider a task with finitely many possible answers. Denote the set of alternatives by
X = {x1, . . . , xn}. As in the binary case, suppose that a more deliberative process D
and a more automatic one I codetermine behavior, and let ∆ > 0 be the probability that
the actual response is selected according to process I. Denote by P (x|D) and P (x|I)
the probabilities that an alternative x ∈ X is selected by process D and I, respectively,
so that the actual probability of a response x being selected is

P (x) = ∆P (x|I) + (1−∆)P (x|D).

Let xD and xI again denote the favored (modal) answers of these processes, respectively.
That is, PD = P (xD|D) > P (x|D) for all x ̸= xD and P I = P (xI |I) > P (x|I) for all
x ̸= xI . This simply makes explicit that the alternative favored by a process is indeed
the process’ most frequent selection. Note that, for the multi-alternative case this does
not imply that the prescription is selected more than half of the time.

As in the binary case, the interpretation is that the modal (favored) option of the
deliberative process, xD, is normatively correct (or, alternatively, that the word “correct”
is used to denote this option). Thus, a trial corresponds to conflict if xD ̸= xI , and to
alignment if xD = xI . A trial would be neutral if the more intuitive process is not cued.

Assumptions (R) and (P) are unchanged in the multi-alternative case. That is, if
RD and RI are the expected process response times, assumed for simplicity (and as in
the binary case) not to depend on the answer actually selected by a process, (R) states
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that RD > RI , capturing that the more automatic process is faster in expected terms.
Analogously, (P) states that P I > PD, that is, the more automatic process is more
internally consistent than the more deliberative one in the sense that I selects the own
favored response xI more often than D selects xD.

The generalized Stroop effect (D1; Theorem 1) also holds in the multi-alternative
case. However, it is worth noticing that assumption (P) is now necessary for the proof
(it was not required in the binary case).

Theorem 5. In the multi-alternative case, if (R) and (P) hold,

(D1) correct responses are slower in expectation in case of conflict than in case of align-
ment.

Theorem 2 on the proportion of correct responses in conflict and alignment also
extends to the multi-alternative case (even if assumptions (R) and (P) do not hold).
Further, in this case we obtain an additional prediction. Say that the answer in a trial is
the intuitive choice if the participant selects the favored answer of the intuitive process,
xI . We then obtain the following generalization (all proofs are in the Appendix).

Theorem 6. In the multi-alternative case,

(D2) the proportion of correct responses is strictly smaller in case of conflict than in
case of alignment, and

(D2’) the proportion of intuitive choices is strictly smaller in case of conflict than in case
of alignment (when they are also correct).

The additional prediction (D2’) makes particular sense in the multi-alternative case,
since many answers might be neither correct (xD) nor intuitive (xI). In the binary
case, (D2’) is an immediate consequence of (D2) if errors are less likely than correct
responses, since in conflict intuitive responses are the only errors and hence their fre-
quency is the complementary of the frequency of correct responses. We remark that in
binary paradigms with large error rates (above 50%), (D2’) would remain an additional
prediction, which however would imply (D2).

Predictions (T1) and (T2), on the relative speed of errors and correct responses
(Theorem 3) also extend to the multi-alternative case, with one caveat. With more than
two alternatives, in case of conflict there are two types of errors. Intuitive errors are
those where the participant selects the option favored by the more automatic process,
xI . Other errors are those where the participant selects some answer not favored by
either process, x ̸= xD, xI . In the multi-alternative case, (T1) holds for the comparison
of intuitive errors and correct responses, and hence it is particularly important to record
the actual answers and not only whether they are correct or erroneous. In contrast,
in case of alignment, where errors are always answers favored by neither process, (T2)
holds unchanged. As in Theorem 3, the proof of (T2) rests on assumption (P), but the
proof of (T1) does not.

Theorem 7. Consider the multi-alternative case and assume (R).

(T1) In case of conflict, the expected response time of intuitive errors is shorter than
the expected response time of correct answers.

(T2) Assume (P). In case of alignment, the expected response time of errors is larger
than the expected response time of correct answers.
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Last, consider the model extension including a non-decision time and a process se-
lection probability depending on conflict or alignment, tA vs. tC and ∆A vs. ∆C . As was
the case for the binary model (Theorem 4), all predictions above hold for this extended
model.

Theorem 8. Consider the extended model for the multi-alternative case and assume
(R), (P), tC ≥ tA, and ∆C ≤ ∆A. Then (D1), (D2), (D2’), (T1), and (T2) hold.

Further, if (R) and (P) did not hold because the two processes are indistinguishable
in terms of automaticity, and in particular RD = RI , predictions (D1), (D2), and (D2’)
still hold as long as the inequality tC ≥ tA is strict. This extends Corollary 1 to the
multi-alternative case.

Corollary 2. Consider the extended model for the multi-alternative case and assume
RD = RI , tC > tA, and ∆C ≤ ∆A. Then (D1), (D2), and (D2’) hold.

5.2 Results (Non-Binary Choice)

Datasets 19 to 21 involve four different experimental tasks reporting choice and response
time which can be described in terms of dual, interacting processes and for which conflict
and alignment could be identified in the dataset. Those are listed in the four bottom
rows of Table 1. The Section “Description of Studies: Non-Binary Choice” below briefly
describes each study and how it is encompassed by our model. Three of the datasets (18–
20) belong to the area of cognitive control, and the last (21) corresponds to a decision-
making task (the Cognitive Reflection Test).

As in the binary case, we test our predictions for each individual study or treatment
by means of non-parametric Wilcoxon signed-rank (WSR) tests, which do not require
distributional assumptions. The results are summarized in the last four columns of Table
1.

All predictions (D1, D2, D2’, T1, and T2) hold in all four datasets with Non-Binary
Choice, with the exception of (T2) in Dataset 21. The Appendix contains details of the
individual tests, robustness analyses, and further comparisons as appropriate for each
dataset.

As in the case of binary-choice datasets, the left-hand side of Figures 1–4 give a forest
plot representation to display the actual difference in response times or proportions
of correct answers as given in predictions (D1), (D2), (T1), and (T2), including the
traditional 95% confidence intervals (assuming a normal distribution of the difference
variables for illustration), and a vertical line at zero for ease of interpretation. The
right-hand side of the figures displays the effect sizes and corresponding 95% confidence
intervals for the WSR tests in Table 1, following the same procedure discussed above to
obtain confidence intervals.

The effect size of a WSR test, r, is considered small for r ∈ [0.1, 0.3], medium for
r ∈ [0.3, 0.5], and large for r > 0.5 (Cohen, 1988; Rosenthal, 1994). We remind the reader
that, if there is no ambiguity in the test, in particular if all signs in a non-parametric test
are positive (or negative), then one obtains point estimates for the effect size instead of
a proper interval. In the Non-Binary case, this occurs for 3 tests (all of them concerning
(D1)).

The figures further illustrate that the datasets also lend overwhelming support to
our predictions in the Non-Binary case.
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5.3 Description of the Studies: Non-Binary Choice

Dataset 18: Task Switching Across the Lifespan Steyvers et al. (2019) collected
a large dataset (N = 1, 000) from an online cognitive-training platform and showed
that practice improves task-switching performance, but persistent costs remain even
after extensive practice, and more so in older adults. This work contributes to the
literature that tries to identify the characteristics of the cognitive processes underlying
task switching (i.e. Rogers and Monsell, 1995; Altmann and Gray, 2008). Stimuli were
moving images of leaves which differed along two dimensions: the direction in which
the leaf pointed and the direction of movement. Each visual dimension had four feature
values (up, down, left, and right), and all 16 combinations were possible. A task cue
(the color of the leaf, green or orange) instructed subjects to report either pointing or
movement direction. Subjects logged in for multiple sessions. Within each session, the
experimental paradigm intermittently alternated between the two task cues, with each
task run including a variable number of trials. An answer is correct if the participant
indicated the direction that was relevant according to the actual task in the specific trial,
and an error otherwise. In this context, an intuitive error is an answer which would have
been correct according to the task that was active in the previous trial.

The deliberative decision process is to react to the color cue and focus attention
on the pertinent dimension, hence indicating either pointing or movement direction as
appropriate. An alternative process, given the structure of the game, is to simply report
the same dimension as in the previous trial. Within a given run, all trials except the
first were in alignment. The first trial of each run in a session, except for the one of the
first run in that session, was in conflict, as new runs changed the task. The first trial in
each session was neutral, since there was no previous trial that could cue the alternative
process. Our predictions find full support in this context.

Dataset 19: Sequential Conflict Modulation Dignath et al. (2019) showed that
episodic memory stores a snapshot of internal attentional states (e.g., focused atten-
tion) together with contextual information, hence memory aids actions by automatizing
and tailoring them to the situational circumstances. Following Goschke (2000), this
work finds that, rather than being orthogonal dimensions, cognitive control and memory
retrieval are closely related (see also Scherbaum et al., 2010).

In two experiments (N = 39 and N = 48, respectively), participants were briefly
(139 ms) shown either numbers (integers between 3 and 6 in letters or Arabic digits)
in Experiment 1 or colors (4 different ones, displayed either as the corresponding words
or as color patches) in Experiment 2, and reported them by pressing the d, f, g, or h
key on a keyboard with their right index, middle, ring, or little finger. Crucially, before
the target stimuli, a task-irrelevant distractor was also briefly presented for 139 ms.
The latter was either a word or a digit, and it was either the same or different from
the target that followed (which always appeared in the same format as the distractor).
Half of the trials were congruent, meaning that the target and the distractor coincided,
while the rest were incongruent, meaning that target and distractor differed. We say
that an answer is correct if the participant pressed the key corresponding to the target
stimuli, and an error otherwise. Intuitive errors are errors where the distractor stimuli
is reported.

The deliberative process is to ignore the distractor and focus on reporting the actual
target, which is effortful as the distractor and the stimuli are presented in very fast
succession. An alternative decision process is to focus on the distractor, since it appears
first. This is a case in which the cognitive differences between the processes might be
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arguable, and hence the model becomes a test of the joint hypothesis represented by
process multiplicity and which process is to be considered more deliberative. In our
terms, congruent trials were in alignment, and incongruent ones were in conflict. Our
predictions find full support in this context.

Dataset 20: Prime-Probe Congruency Effects Schmidt and Weissman (2014)
conducted two different experiments (16 subjects each) using the prime-probe arrow
task of Kunde (2003) to study sequential congruency effects and trial-by-trial attention
adjustments without introducing learning effects. The designs used in this work were
developed to overcome limitations previously pointed out in the literature (i.e. Mayr
et al., 2003; Jiménez and Méndez, 2013). In their experiments, participants were required
to indicate a direction (up, down, left, or right) as shown by an arrow (Experiment 1)
or the corresponding word (Experiment 2). Before the target stimuli was presented,
however, a vertical or horizontal distractor array of five identical arrows (Experiment
1) or three identical words (Experiment 2) was presented for 133 ms, hence priming
the participants to give a certain response. The experiments used four congruent (left-
left, right-right, up-up, down-down) and four incongruent (left-right, right-left, up-down,
down-up) distractor-target pairings. An answer is correct if the participant indicated
the direction given by the target stimuli, and an error otherwise.

The deliberative decision process is to indicate the direction actually given by the
target stimuli, while the alternative process is to report the direction primed by the
distractor array (the most common direction). Obviously, congruent trials, where the
target and distractor point in the same direction, were in alignment, while incongruent
trials were in conflict. Answers in conflict were intuitive errors if they followed the
direction of the distractor (most errors were intuitive in this case). All our predictions
hold in this setting.

Dataset 21: Cognitive Reflection The experiments of Raoelison et al. (2020), dis-
cussed as Paradigm 16a and 16b, included a third set of questions following the cele-
brated bat-and-ball item in the Cognitive Reflection Test of Frederick (2005) (“A bat
and an ball cost $1.10 in total. The bat costs $1 more than the ball. How much does
the ball cost?”). In these questions, a heuristic cues an intuitive but wrong response
(10 cents), while the correct response is not intuitive (5 cents). By changing the in-
volved categories (e.g., pencils and erasers) and numbers, each participant faced four
such questions. There were four possible answers: the correct one, the intuitive one, and
two fillers. Additionally, each participant faced four no-conflict items (with four possible
answers each) where, by eliminating the “more than” comparison, the heuristic cued
the correct response. Study 2 also included four neutral items in the form of simple,
verbally-stated and framed arithmetic problems, where the heuristic was not cued. As
for the other items, participants gave a first answer under time pressure (in this case
within 5 s), which they could correct later. We reanalyze that initial answer. An answer
is correct if the participant indicated the normative solution to the problem, and an error
otherwise. In conflict, intuitive errors correspond to the responses cued by the heuristic.

The deliberative decision process is to solve the analytical problem, while the alterna-
tive process is to follow the heuristic. Trials where the heuristic cued the wrong answer
were in conflict, and those where it suggested the correct choice were in alignment. Trials
where the heuristic was not cued were neutral situations (and we will return to them in
a latter section). Again, our predictions hold except for T2. In alignment, the sample
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size is drastically reduced since the vast majority of participants made no mistakes. In
this case, errors are slower than correct answers, but the difference is not significant.

6 Neither Conflict Nor Alignment: Neutral Trials

Obviously, not all human decisions trigger several, possibly competing processes. Even in
paradigms designed to elicit multiple processes, it is also often the case that some trials
might lack the cue that elicits the more-automatic process targeted in the particular
paradigm. In our terms, such trials are called neutral, and offer an opportunity to
study the deliberative processes in isolation, and to compare them to situations of either
conflict or alignment.

6.1 Neutral Trials in the Considered Datasets

Neutral trials are present in many (but not all) of the datasets we have considered.
In the Flanker task of White and Curl (2018) (Dataset 5), in roughly one third of
the trials the Flankers were entirely absent. In the Gabor-patch classification task of
Denison et al. (2018) (Dataset 6), one sixth of the trials were preceded by strictly neutral
cues, creating neither conflict nor alignment. In the task of Heathcote et al. (2019)
(Dataset 8), where participants had to judge the majority color in a large, rapidly-
flickering checkerboard, 37.5% of the blocks were unbiased, meaning that they included
neither a prior nor a reward asymmetry, and hence cued no alternative process. In
the three categorization experiments reanalyzed by Hu and Rahnev (2019) (Dataset
9), part of the trials included no previous cue and are hence neutral in our terms.
In the recognition heuristic experiment of Glöckner and Bröder (2014) (Dataset 15),
where participants had to name the most-populated city of two named ones, 46.7% of
trials pitted either two well-known or two mostly unknown cities against each other,
and hence the recognition heuristic was not cued. In the syllogism tasks of Raoelison
et al. (2020) (Dataset 16), each participant faced four neutrally-framed items formulated
abstractly, hence not eliciting a believability-based process. In the base-rate tasks from
the same article (see again Paradigm 16 above), again four items per each participant
were neutral, in this case because the stereotypical association applied to both possible
responses. In the reinforcement-learning study of Fontanesi et al. (2019) (Dataset 17),
trials where the previous choice was not among the actual alternatives were neutral,
because reinforcement could not be triggered. This happened 54.3% of the time. In the
dataset of Steyvers et al. (2019) (Dataset 18), where participants had to report either
the direction a leaf was pointing to or its direction of movement, the only neutral trials
correspond to the very first-trial in each session, since there was no previous trial which
could interact with the currently-active criterion. While this is a very small proportion of
trials, if still adds up to a large number (47,410 in total) due to the size of the dataset.
Last, the Cognitive Reflection Test in Raoelison et al. (2020) (Dataset 21) included
neutral items in the form of simple, verbally-stated arithmetic problems which elicited
no intuitive response at all.

6.2 Error Rates in Neutral Trials

The first opportunity afforded by the presence of neutral situations in the considered
datasets is to compare error rates across possible situations. Prediction (D2) in Theorems
2 and 6 states that the proportion of correct responses should be larger in case of
alignment compared to conflict. This prediction also holds for the extended models
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(Theorems 4 and 8). The following (immediate) result shows that, in the binary case,
error rates for neutral trials should be intermediate between the conflict and alignment
cases.

Proposition 1. Consider the binary-choice case. Assume (P).

(N1) The proportion of correct responses in neutral trials is strictly smaller than the
proportion of correct responses in case of alignment.

(N2) The proportion of correct responses in neutral trials is strictly larger than the pro-
portion of correct responses in case of conflict.

The intuition for these predictions is straightforward. The proportion of correct
responses in neutral trials should simply be the expected frequency of the modal answer
for the deliberative process, PD. The proportion of correct responses in case of alignment
is a convex combination between PD and P I , since in alignment the modal answer of
the intuitive process is also correct. Since P I > PD by (P), (N1) follows. In case
of conflict, the modal answer of the intuitive process is xI , which is incorrect. The
proportion of correct responses in case of conflict is a convex combination between PD

and 1−P I < 1/2 < PD, and (N2) follows (note that this last prediction does not require
assumption (P)).

In the multi-alternative case, prediction (N1) follows without change by the same
logic, but the second prediction is more subtle.

Proposition 2. Consider the multi-alternative case. Assume (P).

(N1) The proportion of correct responses in neutral trials is strictly smaller than the
proportion of correct responses in case of alignment.

(N2’) The proportion of intuitive choices in neutral trials is strictly smaller than the
proportion of intuitive choices in case of conflict.

The intuition for (N2’) is also simple. The proportion of intuitive choices in neutral
trials is simply the frequency of the intuitive answer under the deliberative process, i.e.
P (xI |D). In case of conflict, the proportion of intuitive choices is a convex combination
between P I and P (xI |D). By (P), P I > PD and the latter is larger that P (xI |D) since
xD is process D’s modal answer. Hence (N2’) follows.

These predictions are supported in our datasets. First, in agreement with (N1), our
analyses show that it is more likely to observe more errors in neutral than alignment
situations. This is summarised in Figure B.1 in Appendix C, which also reports the tests.
Specifically, we observe significantly more errors (hence less correct responses) in neutral
than alignment situations in twelve out of fifteen studies containing neutral trials, with
only one other study displaying the opposite result (Dataset 18). The remaining two
studies exhibit no significant differences.

Evidence also suggests that, in agreement with prediction (N2), it is far more likely
to observe more (intuitive) errors in conflict than in neutral situations. These results are
summarised by Figure B.2 in Appendix C, which also reports the tests. Specifically, we
observe significantly more errors in conflict than neutral situations in eleven out of the
fifteen studies that allow for this comparison. The opposite effect is never observed; for
the remaining four studies, differences are not significant. In the two cases with more
than two alternatives including neutral trials, prediction (N2’) is supported.
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6.3 Response Times in Neutral Trials

Prediction (D1) shows that correct responses should be slower under conflict than in
case of alignment. The second comparison of interest involving neutral trials concerns
whether correct responses are faster or slower in those trials than in conflict or alignment
trials. Assuming no difference between the response times of errors and correct responses
within a single process, the expected response time of correct answers in neutral trials is
simply RD, while the expected response time of correct answers in conflict or alignment
trials is a convex combination between RD and RI , as correct answers might come from
either process. Since RD > RI by (R), the response time of correct answers should
be longer for neutral trials. However, if one takes into account non-decision time as
in Extended Model I, it is natural to assume that tC would be larger than the non-
decision time of neutral trials, as the former should capture conflict resolution and
process selection, while in neutral trials only one process is active. The two effects go in
opposite directions, and hence there is no natural prediction. It is less natural to assume
any specific ordering between tA and non-decision time for neutral trials, but since this
does not exclude that the former might be larger, again no natural prediction arises.

Suppose that the time needed for conflict detection and resolution, tC , is enough to
offset the differences in response times among the processes. Suppose, however, that the
analogous, shorter time when there is actually no conflict, tA, does not suffice. In this
particular case, we would obtain the prediction that correct responses for neutral trials
are faster than those in conflict, but slower than those in alignment.

This is broadly supported by the analysis of our datasets. For the kind of deliberative
and intuitive processes involved in the tasks collected here, it is far more likely to observe
correct responses in neutral situations being faster than those in conflict but slower than
those in alignment.

Specifically, in the fifteen studies that allow for this comparison, we observe slower
correct responses in conflict trials compared to neutral ones in nine cases, no significant
differences in four cases, and the opposite effect in only one occasion (Dataset 17). We
also observe faster correct responses in alignment trials compared to neutral ones in
seven cases, no significant differences in seven other cases, and the opposite effect in
only one occasion (Dataset 18). These results are summarised in Figures B.3 (neutral
vs. conflict) and B.4 (neutral vs. alignment) in Appendix C, which also contains the
actual tests.

6.4 Slow Errors in Neutral Trials

The last comparison of interest afforded by the presence of neutral situations in our
datasets concerns the relative speed of favored (modal) answers and other answers in
the absence of dual-process effects. The original, symmetric-boundaries drift-diffusion
model of Ratcliff (1978) predicts identical response times distributions for either re-
sponse, unless trial-by-trial variability in either drift rates or starting points is assumed.
For simplicity, the model variants discussed so far assume no differences in the response
times conditional on given answers, for a fixed process, and show that asymmetries (the
relative speed of errors) can arise simply due to the interaction of several processes
(however, the subsection Extended Model III below relaxes this assumption). Still, the
considered datasets allow us to empirically evaluate whether there is actual evidence
pointing to an asymmetry in response times already within a single process.

Overall, evidence suggests that for the kind of deliberative processes involved in the
tasks collected here, and in the absence of a different, more automatic process, either
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Figure 5: Comparison of the response times of correct choices and errors in neutral trials,
for all datasets containing this type of trials. Effect sizes are for the non-parametric tests.
Bootstrapped confidence intervals using 5,000 repetitions.

the response times of modal and non-modal responses are not significantly different, or,
if a difference exists, it goes in the direction of modal answers being faster. Note that,
since neutral trials involve deliberative processes only, and a correct answer is defined as
the modal answer of the deliberative process, this is the same as observing slower errors
in neutral trials.

These results are summarised by Figure 5. We observe no significant differences in
four of the datasets enumerated above (5, 8, 16, and 21), encompassing seven different
comparisons. We observe significantly slower errors (compared to correct responses) in
the neutral trials of four other datasets (6, 9, 17, and 18), encompassing six different
comparisons. Faster errors in neutral trials were only observed in one dataset (15), and
only for a specific subset of comparisons (when both cities were categorized as unknown).
All tests are in Appendix C.

7 Extended Model III: Option-Dependent Process Response
Times

In this section, we relax assumption (R) to reflect the possibility that expected process
response times differs depending on the actually-selected response. In the previous
section, we examined neutral trials, where only one (deliberative) process should be
active, and found that, in general, either there was no difference in response times
conditional on the selected alternative, or correct answers were observed to be slower.
In the presence of a single, deliberative process D, this would correspond to the property
that the response time of the favored (modal) answer xD is shorter than the response
time of other possible answers.

Consider the more general, multi-alternative case as in Extended Model II. That is,
the set of alternatives is X = {x1, . . . , xn}. All derivations and results apply to the
binary case simply by considering two alternatives, n = 2. Further, we allow for a non-
decision time and a process selection probability depending on conflict or alignment as
in Extended Model I, tA vs. tC and ∆A vs. ∆C . Again all derivations and results apply
to the basic case with tA = tC and ∆A = ∆C = ∆
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Let RD(x) = E[t|x,D] and RI(x) = E[t|x, I] be the expected response times con-
ditional on the response being selected by process D or I, respectively, and on the
alternative x being selected. Assumption (R) is now weakened to the following property.

(R’) RD(xD) > RI(xI).

That is, the more automatic process is a swifter one only in the sense that it selects
its own favored option faster on average than the more deliberative process selects its
respective favored option.

We then require an additional assumption relating the response times of favored and
non-favored alternatives for a given process. In view of the evidence in the previous
section, we postulate that favored options are chosen faster than non-favored ones.

(R-D) RD(xD) ≤ RD(x) for all x ̸= xD.

(R-I) RI(xI) ≤ RI(x) for all x ̸= xI .

These assumptions are weaker that those in the Basic Model in the sense that, if expected
response times do not depend on the selected alternative, (R-D) and (R-I) become
vacuous, and (R) implies (R’). For process D, assumption (R-D) corresponds to “slow
errors” within a single process. This is, however, different from a statement of whether
observed errors are fast or slow, as the latter arise from the interaction of both processes
and, except for neutral trials, it is not possible to observe which process actually selects
the response. x In this more general case, all previous predictions still hold, with the
exception of (T1).

Theorem 9. Consider the extended model for the multi-alternative case and alternative-
dependent response times. Assume (R’), (R-D), (R-I), (P), tC ≥ tA, and ∆C ≤ ∆A.
Then (D1), (D2), (D2’), and (T2) hold.

Hence, with the exception of (T1), our predictions do not depend on the assumption
the expected response times do not depend on the selected alternative. Prediction (T1),
i.e. fast errors in case of conflict, fails to obtain under the weaker assumptions above.
This is because, without quantitative assumptions expected response time differences,
assumption (R-D) runs exactly against property (T1). Empirically, we would of course
still expect (T1) to hold as long as within-process response time differences as a function
of selected alternatives are not too large. Formally, it is possible to prove a stronger
result. (T1) will also hold in general if the response times of the deliberative process are
option-dependent, as long as the selection of intuitive options (xI) by the deliberative
process is not much slower than the selection of the own favored responses (xD). This
is reflected by the following result.

Theorem 10. Consider the extended model for the multi-alternative case and alternative-
dependent response times. Assume (R’), (R-I), (P), tC ≥ tA, and ∆C ≤ ∆A. Then,

(a) If the process response times of process D are option-independent (as in the Basic
Model), (T1) holds.

(b) If the process response times of process D are not option-independent, but RD(xI)
is not much larger that RD(xD), (T1) also holds. That is, given all parameters of
the processes D and I except for RD(xI), there exists R̄ > RD(xD) such that, if
RD(xI) < R̄, then (T1) holds.

However, the fact that (T1) depends on assumptions not needed for any other pre-
diction signals that this particular prediction might be less stable (across tasks and
cognitive processes) than others. This broadly reflects our empirical results.
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It is also possible to show a result analogous to Corollaries 1 and 2 in this case.
Suppose that two processes are indistinguishable in terms of automaticity in the weaker
sense that the expected response times of their respective favored responses do not differ.
Then, predictions (D1), (D2), and (D2’) still hold, as long as the inequality tC ≥ tA is
strict.

Corollary 3. Consider the extended model for the multi-alternative case and alternative-
dependent response times. Assume (R-I), RD(xD) = RI(xI) , tC > tA, and ∆C ≤ ∆A.
Then (D1), (D2), and (D2’) hold.

8 General Discussion

We presented and tested a simple formal nonparametric model which predicts that errors
will be slower or faster than correct responses depending on whether two underlying
processes are in alignment or in conflict, respectively. This corresponds to congruent and
incongruent trials in many cognitive-control conflict tasks (as Stroop, Flanker, Simon,
etc.), but extends to many other paradigms in the domains of attention, social cognition,
memory, and decision making. Crucially, the model delivers predictions which are ex
ante valid, i.e., do not depend on any specific values of model parameters.

The model also predicts a generalized Stroop effect, i.e., correct responses must be
slower in case of conflict compared to alignment. It also predicts larger error rates in case
of conflict. All predictions are shown to enjoy overwhelming support in 31 experimental
tasks from 20 datasets from the recent literature.

A number of extensions show that the predictions are robust to considering more
than two alternatives, non-decision times, process-selection probabilities, and differenti-
ating conflict and alignment. The predictions hold even though the individual processes
might exhibit no alternative-dependent response-time differences. That is, the direc-
tional predictions in response times arise from the dual-process structure which models
the interaction of two different processes, and not from specific response-time differences
associated with the alternatives themselves.

The limitations of the model arise from its very nonparametric nature. One could
argue that the proposed framework is not a (computational) model in the sense usually
associated with the word in cognitive psychology, because it operates at a different level
of abstraction. The model cannot be fit to specific datasets, since it lacks any parameters
to fit. Thus, it cannot be directly compared to other, parametric models. The model,
however, is fully falsifiable (e.g., Jones and Dzhafarov, 2014), since the predictions do
not depend on any specific parameter values or distributional assumptions.

8.1 Relationship to Single-Process Models

The model remains agnostic on the nature of the individual processes (deliberative and
intuitive). In particular, one can further specify the framework by assuming specific mod-
els for those individual processes, without losing the general predictions. For example,
one can assume the deliberative and intuitive processes to be independent Drift-Diffusion
Models with different drift rates, as long as the intuitive one has a larger drift rate (in
absolute value) and is hence swifter and more internally consistent than the deliberative
one, hence fulfilling the general assumptions. In particular, this can be done assuming
simple, symmetric DDMs without inter-trial variability in either drift rates or starting
points. It is well-know that such simple DDMs predict identical response times for errors
and correct responses, which has motivated more complex versions of the DDM. Our
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model can generate fast and slow errors building upon two DDMs without any inter-trial
variability, because the predictions arise from the interaction between the processes.

This is related to the same intuition that slow errors can already arise in a DDM with
two different, randomly-selected drift rates (Ratcliff and Rouder, 1998). The difference
is that, in our model, the two processes react to different dimensions of the stimuli,
which allows to capture conflict and alignment. A detailed DDM-microfoundation of
the model would be equivalent to a DDM specification where the drift rate is randomly
sampled from two positive values for conflict trials, µ1 > µ2 > 0, and from two values
with different signs for alignment trials, µ2 and −µ1. Such a model was considered in
Alós-Ferrer (2018).

Alternatively, one can assume any other process-model for the deliberative and in-
tuitive processes as long as the general assumptions of any of the model extensions
are fulfilled. For example, Poisson counter models (Townsend and Ashby, 1983; Smith
and Van Zandt, 2000; Townsend and Liu, 2020) are known to predict slow errors, and
have been criticized because fast errors are also observed empirically. Suppose that the
deliberative and intuitive processes in our model are captured by two different Pois-
son counter models, one being swifter and more internally consistent than the other.
Each process will entail longer response times for its own non-modal responses, i.e., slow
within-process “errors.” As we have seen, this is frequently observed in neutral trials,
where only one process should be involved. The results in our Extended Model III then
show that all our predictions continue to hold. That is, our framework can be imme-
diately used to extend Poisson counter models (or any other class of models predicting
slow errors) while capturing empirically-received response time asymmetries.

8.2 Other RT Asymmetries

Our model’s most important prediction concerns the relative speed of errors depending
on (exogenously observable) conflict or alignment between the underlying processes. The
literature has reported other response time asymmetries. The first and most well-known
one is the speed-accuracy tradeoff, where errors are observed to be faster if speed is
emphasized, and slower if accuracy is emphasized.

Our model can explain this asymmetry as follows. Suppose individual processes ex-
hibit the slow error property in the sense that the respective process modal response is
on average faster than other responses (as in the case of Poisson counter models). Em-
phasizing accuracy is a manipulation which should shift the balance toward deliberative
processes. In terms of the model, ∆ should be closer to zero if accuracy is emphasized.
The model hence approaches the single-process case where all decisions come from the
same (deliberative) process. Hence, errors will tend to be slower. If speed is emphasized,
however, the balance should be shifted toward the faster, more intuitive process. As long
as the task still involves conflict, the value of ∆ will be intermediate compared to the
accuracy condition, resulting in the model’s prediction of fast errors for conflict trials.

Other empirically reported asymmetries could also be explained by the model. It
is sometimes reported that faster subjects tend to produce errors faster than correct
responses, while slower subjects exhibit the opposite pattern (Ratcliff et al., 2004, p.
165). At the same time, slower subjects seem to be more deliberative in the sense that
they make fewer errors. Suppose again that individual processes exhibit faster modal
responses compared to other responses. Slower subjects might be slow because they
rely on their deliberative processes more often (which explains the lower error rates).
Again, this corresponds to a value of ∆ closer to zero, and the model for those subjects
approaches the single-process case, where errors will tend to be slower. In contrast, faster
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subjects might be fast because they more often (but not exclusively) rely on intuitive
processes, resulting in intermediate values of ∆, leading to the model’s prediction of fast
errors for conflict trials.

8.3 Comparison to Other Dual-Process Models

While there are many dual-process models in the literature, few are explicitly formalized.
There are, however, a few notable exceptions which allow for an explicit comparison.
Ulrich et al. (2015) considers a Diffusion Model for Conflict Tasks (DMC) which assumes
two processes proceeding in parallel. Decisions follow from evidence accumulation driven
mainly by a controlled (deliberative) process. However, an automatic process works on
task-irrelevant stimuli and spills over by influencing the controlled process’ drift rate.
The sign of the spillover depends on whether a trial is congruent or not, and hence
the correct response is facilitated (inhibited) by the automatic process in congruent
(incongruent) trials, corresponding to our concept of alignment (conflict).

In contrast with our model, the DMC operates by aggregating both processes in a
single accumulator, while the processes in our model operate independently. The DMC is
analytically intractable in the sense that closed-form predictions are not feasible. Ulrich
et al. (2015) focus on explaining negative-going delta functions, which plot the quantile
difference for the RT distributions in incongruent and congruent conditions as a function
of the quantiles’ average, while we aim to predict the relative speed of errors compared
to correct answers.

Diederich and Trueblood (2018) consider a formal, serial dual-process model for de-
cisions under risk, where evidence accumulation is mainly driven by an intuitive process
at the beginning of each trial, and by a more deliberative process toward the end of
the trial. The switching point is randomly determined. That is, as in Ulrich et al.
(2015), both processes contribute to a single accumulator, while in our model the pro-
cesses operate independently, with random process selection. The model of Diederich
and Trueblood (2018) is closer to dual-stage models of evidence accumulation, as, e.g.,
the one of Hübner et al. (2010). Diederich and Trueblood (2018) concentrate on biases
in risky decision making and do not examine the relative speed of errors.

8.4 Conclusions

We presented a dual-process model which predicts slow or fast errors depending on an
exogenously-observable classification of trials in a large variety of tasks. The model is
nonparametric in the sense that the predictions do not depend on any specific values of
parameters, and hence can fully falsify the model.

The predictions, which also include effects on error rates and a generalized Stroop
effect, should hold whenever a task elicits two clearly-differentiated cognitive processes,
one more deliberative than the other. This includes all classical conflict tasks (Stroop,
Flanker, Simon, etc.), but also many others in the domains of cognitive control, attention,
social cognition, memory, and decision making.

We tested the model in 31 experimental tasks from 20 different datasets and found
overwhelming support for its predictions. These results are encouraging and suggest
that the model captures a general structural relation between the interaction of cognitive
processes and observable features of human behavior, very especially the relative speed
of errors.
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APPENDICES

A Proofs of Theoretical Results

For each prediction in the article, we proceed to prove the most general result and then
comment how the results in the different Basic and Extended Models derive from the
results in this Appendix.

In particular, the analysis below refers to the multi-alternative case where the set of
alternatives is given by X = {x1, . . . , xn}. Results for the binary case are immediately
obtained by setting n = 2. The analysis also consider non-decision times depending
on alignment on conflict, tA vs. tC , and a process selection probability also depending
on alignment or conflict, ∆A vs. ∆C . Results for the Basic Models a obtained setting
tA = tC and ∆A = ∆C = ∆.

A.1 Prediction D1: Generalized Stroop Effect

We prove this result in the setting of Extended Model III. That is, expected response
times might differ depending on the selected alternative, as long as (R’), and (R-I) hold.
Note that the result does not require assumptions (R-D) or (P).

Theorem A.1. Consider the multi-alternative case allowing for alternative-dependent
expected response times. Assume (R’), (R-I), tC ≥ tA, and ∆C ≤ ∆A.

(D1) Correct responses are slower in expectation in case of conflict than in case of
alignment.

Proof. The expected response time of correct responses in case of alignment (xD = xI)
is

(1) E(t|xD,Alignment) = tA +
(1−∆A)P

DRD(xD) + ∆AP
IRI(xI)

(1−∆A)PD +∆AP I

and the expected response time of correct responses in case of conflict (xD ̸= xI) is

(2) E(t|xD,Conflict) = tC +
(1−∆C)P

DRD(xD) + ∆CP (xD|I)RI(xD)

(1−∆C)PD +∆CP (xD|I)
.

Since RI(xI) ≤ RI(x) for all x ̸= xI by (R-I), it follows that

(3) E(t|xD,Conflict) ≥ tC +
(1−∆C)P

DRD(xD) + ∆CP (xD|I)RI(xI)

(1−∆C)PD +∆CP (xD|I)
.

Thus, a sufficient condition for E(t|xD,Conflict) > E(t|xD,Alignment) is that the right-
hand side of the last inequality is strictly larger than the right-hand side of (1). Since
tC ≥ tA, this holds if the fraction in the right-hand side of the last inequality is strictly
larger than the fraction in the right-hand side of (1). After some straightforward com-
putations, this latter condition holds if and only if

PD ·
[
RD(xD)−RI(xI)

]
·
[
∆A(1−∆C)P

I − (1−∆A)∆CP (xD|I)
]
> 0

Since RD(xD) > RI(xI) by (R’), the last inequality is fulfilled if

∆A

(1−∆A)
P I >

∆C

(1−∆C)
P (xD|I)
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which follows because ∆A ≥ ∆C and P I > P (xD|I).

If process response times are assumed not to depend on selected alternatives, assump-
tion (R-I) holds vacuously and (R) implies (R’). Hence, in Basic Model I the result above
implies Theorem 1 by setting n = 2, tA = tC and ∆A = ∆C = ∆. In Extended Model
I, it implies that (D1) holds in Theorem 4, by setting n = 2. Note that, in Theorem
4, (D1) does not require assumption (P). In Extended Model II (the multi-alternative
case), the result above implies Theorem 5 by setting tA = tC and ∆A = ∆C = ∆. It
also implies that (D1) holds in Theorem 8. Again, in this case, assumption (P) is not
needed. Last, for Extended Model III, the result above implies that (D1) holds in 9.
Note, however, that neither (R-D) nor (P) are needed for this implication.

Corollary 4. Consider the multi-alternative case allowing for alternative-dependent ex-
pected response times. Assume RD(xD) = RI(xI), tC > tA, and ∆C ≤ ∆A. Then (D1)
holds.

Proof. Since RD(xD) = RI(xI), the computations in the proof of Theorem A.1 show
that the fractions on the right-hand side of (1) and (5) are equal. Since tC > tA, the
strict inequality follows.

This Corollary shows that (D1) holds in Corollary 3 in Extended Model III. It also
implies that property (D1) holds in Corollary 1 in Extended Model I by setting n = 2,
and in Corollary 2 in Extended Model II.

A.2 Predictions D2 and D2’: The Frequency of Errors

Again, we first prove these results in the setting of Extended Model III and then we
show how this result implies properties (D2) and (D2’) in all other models. Please note
that (D2) and (D2’) do not involve any statements about response times, and hence
assumptions (R), (R’), (R-I), and (R-D), as well as conditions on tC and tA, have no
bearing here.

Theorem A.2. Consider the multi-alternative case allowing for alternative-dependent
expected response times. Assume (P) and ∆C ≤ ∆A.

(D2) The proportion of correct responses is strictly smaller in case of conflict than in
case of alignment.

(D2’) The proportion of intuitive choices is strictly smaller in case of conflict than in
case of alignment (when they are also correct).

Proof. We first prove (D2). The proportion of correct responses in case of alignment
(xD = xI) is

P (xD|Alignment) = (1−∆A) · PD +∆A · P I ,

and in case of conflict (xD ̸= xI) it is

P (xD|Conflict) = (1−∆C) · PD +∆C · P (xD|I) < (1−∆C) · PD +∆C · P I ,

where the last inequality holds because P I > P (xD|I) when xD ̸= xI .
Hence, property (D2) holds if

(1−∆C) · PD +∆C · P I ≤ (1−∆A) · PD +∆A · P I
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or, equivalently,
(∆A −∆C)P

D ≤ (∆A −∆C)P
I .

This last property holds because ∆A ≥ ∆C and, by (P), P I > PD.
We now turn to (D2’). The proportion of intuitive choices (xI) in case of alignment

(xD = xI) is the same as the proportion of correct responses in this case, given above.
The proportion of intuitive choices in case of conflict (xD ̸= xI) is

P (xI |Conflict) = (1−∆C) · P (xI |D) + ∆C · P I < (1−∆C) · PD +∆C · P I ,

where the last inequality holds because PD > P (xI |D) when xD ̸= xI .
Hence, property (D2’) reduces to the same computation as in the proof of (D2).

This result implies Theorem 3 in Basic Model I setting n = 2 and ∆C = ∆A, as
that result only requires assumption (P). It also implies that (D2) holds in Theorem 4
setting n = 2. The implication also holds in Corollary 1, as the additional conditions on
response times do not affect this prediction. Theorem A.2 above also implies Theorem
7 in Extended Model II setting ∆C = ∆A, and directly implies that properties (D2)
and (D2’) hold in Theorem 8 and Corollary 2. Last, it again implies these properties
in Theorem 9 and Corollary 3 as the only difference between those results and previous
ones are assumptions on response times, which have no bearing on (D2) and (D2’).

A.3 Predictions N1, N2, and N2’: Neutral Trials

We now turn to Propositions 1 and 2. The following result collects the needed proofs.

Proposition 3. Consider neutral trials.

(N1) Assume (P). Both in the binary and in the multi-alternative cases, the proportion
of correct responses in neutral trials is strictly smaller than the proportion of correct
responses in case of alignment.

(N2) In the binary case, the proportion of correct responses in neutral trials is strictly
larger than the proportion of correct responses in case of conflict.

(N2’) Assume (P). In the multi-alternative case, the proportion of intuitive choices in
neutral trials is strictly smaller than the proportion of intuitive choices in case of
conflict.

Proof. We first prove (N1). The proportion of correct responses in neutral trials is PD.
In case of alignment (xD = xI), it is

P (xD|Alignment) = (1−∆A) · PD +∆A · P I .

Since P I > PD by (P), (N1) follows.
We now turn to (N2). In the binary case, the proportion of correct responses in case

of conflict (xD ̸= xI) it is

P (xD|Conflict) = (1−∆C) · PD +∆C · (1− P I) < (1−∆C) · PD +∆C · PD = PD,

where the inequality holds because 1− P I < 1/2 < PD.
Last, we prove (N2’). The proportion of intuitive choices in neutral trials is P (xI |D).

In case of conflict (xD ̸= xI), it is

P (xI |Conflict) = (1−∆C) · P (xI |D) + ∆C · P I .
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Hence (N2’) holds if P I > P (xI |D). This is true because P I > PD by (P) and PD >
P (xI |D) because xD is process D’s modal answer.

Proposition 1 follows from statements (N1) and (N2) in the result above, while
Proposition 2 follows from statements (N1) and (N2’).

A.4 Prediction T2: Slow Errors in Case of Alignment

As in previous sections, we establish this prediction for the most general Extended Model
III and then we show how that result implies property (T2) for all other models in the
main text. Note that assumptions on tC vs. tA and ∆C vs. ∆A are inconsequential for
this result, as all variables involved refer to the case of alignment only.

Theorem A.3. Consider the multi-alternative case allowing for alternative-dependent
expected response times. Assume (R’), (R-D), (R-I), and (P).

(T2) In case of alignment, the expected response time of errors is larger than the expected
response time of correct answers.

Proof. The expected response time of correct responses in case of alignment (xD = xI)
is as given in (1), and the expected response time of errors is

E(t|x ̸= xD,Alignment) = tA +
(1−∆A)

∑
x ̸=xD PD(x)RD(x) + ∆A

∑
x ̸=xI P I(x)RI(x)

(1−∆A)(1− PD) + ∆A(1− P I)

≥ tA +
(1−∆A)(1− PD)RD(xD) + ∆A(1− P I)RI(xI)

(1−∆A)(1− PD) + ∆A(1− P I)
.

where the inequality follows from (R-D) and (R-I). Thus, a sufficient condition for
E(t|x ̸= xD,Alignment) > E(t|xD,Alignment) is that the right-hand side of the last
inequality is strictly larger than the right-hand side of (1). After some straightforward
computations, this condition holds if and only if

(RD(xD)−RI(xI)) · (P I − PD) > 0.

This inequality holds because RD(xD) > RI(xI) by (R’) and P I > PD by (P).

This result implies that (T2) holds in Theorem 3 because assumption (R) implies
(R’) and (R-D), (R-I) hold trivially in Basic Model II, where expected process response
times are assumed not to depend on the chosen option. It also implies this prediction in
Theorem 4 in Extended Model I, as the assumptions on tC vs. tA and ∆C vs. ∆A have
no bearing on (T2). For the same reasons, Theorem A.3 implies (T2) in Theorems 7 and
8 in Extended Model II, as the only difference is that multiple alternatives are allowed
in the those results. Last, the result directly implies that (T2) holds in Theorem 9 in
Extended Model III.

A.5 Prediction T1: Fast Errors in Case of Conflict

We establish this prediction for Extended Model III and then we show how that result
implies property (T1) for previous models. Note that, as in the previous subsection,
assumptions on tC vs. tA and ∆C vs. ∆A are inconsequential for this result, as all
variables involved refer to the case of conflict only.
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Theorem A.4. Consider the multi-alternative case, and assume (R’) and (R-I). Further
assume that, for the deliberative process D, expected process response times do not depend
on chosen options.

(T1) In case of conflict, the expected response time of intuitive errors is shorter than
the expected response time of correct answers.

Proof. The expected response time of intuitive errors (choosing xI) in case of conflict
(xD ̸= xI) is

(4) E(t|xI ,Conflict) = tC +
(1−∆C)P (xI |D)RD +∆CP

IRI(xI)

(1−∆C)P (xI |D) + ∆CP I
.

The expected response time of correct responses in case of conflict is as given in (2),
replacing RD(xD) with RD. By (R-I), RI(x) ≥ RI(xI) for all x ̸= xI , and hence

(5) E(t|xD,Conflict) ≥ tC +
(1−∆C)P

DRD +∆CP (xD|I)RI(xI)

(1−∆C)PD +∆CP (xD|I)

Thus, a sufficient condition for E(t|xD,Conflict) > E(t|xI ,Conflict) is that the right-
hand side of inequality (5) is strictly larger than the expression in (4). After some
straightforward computations, this condition holds if and only if[

RD −RI(xI)
]
·
[
PDP I − P (xI |D)P (xD|I)

]
> 0.

This inequality holds because PD > P (xI |D) and P I > P (xD|I) (as xD ̸= xI), and
RD > RI(xI) by (R’).

This result proves Theorem 10(a), and immediately implies (T1) in Theorems 3
(Basic Model) and 7 (Extended Model II). Since assumptions on tC vs. tA and ∆C vs.
∆A have no impact on (T1), the prediction also follows immediately in Theorems 4 and
8.

The following result proves Theorem 10(b), which captures the idea that (T1) still
holds provided that intuitive options selected by the deliberative process D are not too
slow. We remark that, formally, this result also implies Theorem A.4, but we keep the
proof of that result explicit for clarity.

Theorem A.5. Consider the multi-alternative case, and assume (R’) and (R-I). Fix all
process parameters except for RD(xI). Then, there exists R̄ > RD(xD) such that (T1)
as in Theorem A.4 holds whenever RD(xI) < R̄.

Proof. The expected response time of intuitive errors (choosing xI) in case of conflict
(xD ̸= xI) is

E(t|xI ,Conflict) = tC +
(1−∆C)P (xI |D)RD(xI) + ∆CP

IRI(xI)

(1−∆C)P (xI |D) + ∆CP I
.

The expected response time of correct responses in case of conflict (xD ̸= xI) is

E(t|xD,Conflict) = tC +
(1−∆C)P

DRD(xD) + ∆CP (xD|I)RI(xD)

(1−∆C)PD +∆CP (xD|I)

≥ (1−∆C)P
DRD(xD) + ∆CP (xD|I)RI(xI)

(1−∆C)PD +∆CP (xD|I)
,
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Figure A.1: Analyses of the Stroop task by Liefooghe et al. (2019). Left: Average
response times (in seconds) for errors and correct answers conditional on alignment vs.
conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01, ∗∗ p < .05.

where the inequality follows from (R-I) as in the proof of Theorem A.4 Thus, a sufficient
condition for E(t|xD,Conflict) > E(t|xI ,Conflict) is that

(1−∆C)P
DRD(xD) + ∆CP (xD|I)RI(xI)

(1−∆C)PD +∆CP (xD|I)
>

(1−∆C)P (xI |D)RD(xI) + ∆CP
IRI(xI)

(1−∆C)P (xI |D) + ∆CP I
.

Straightforward but cumbersome computations show that the last inequality is equiv-
alent to

RD(xI) < RD(xD) +
∆C

(
RD(xD)−RI(xI)

) [
PDP I − P (xI |D)P (xD|I)

]
P (xI |D) [∆CP (xD|I) + (1−∆C)PD]

hence the statement of the Theorem holds taking the right-hand side of this inequality
as R̄. Note that the denominator of the fraction is always strictly positive, and the
numerator is also strictly positive by (R’) and because PD > P (xI |D) and P I > P (xD|I)
(as xD ̸= xI). Hence, R̄ > RD(xD) as claimed.

B Detailed Analysis of Predicted Effects for the Individual
Datasets

B.1 Cognitive Control

Dataset 1: Stroop Effects and Derived Associations. Liefooghe et al. (2019)
reported five experiments encompassing 57, 54, 59, 49, and 56 subjects, respectively.
The experiments differed in details of the training phases and the implementation. For
instance, Experiment 2 included Go/No-Go trials intermixed with the Stroop ones, and
Experiments 3–5 used four colors, mapped however into two keys. Participants went
through 360, 480, 576, 576, and 768 trials, respectively. For the sake of brevity, we
report our analysis pooling all five experiments (N = 275). Figure A.1 summarizes
the results for normal Stroop trials, reinforced associations, and derived associations.
For normal Stroop trials, all predictions hold, although response time differences are
small due to the fast nature of the task. Correct answers are slower in conflict than in
alignment (Prediction D1, 0.637 vs. 0.594 s; N = 273, z = 11.625, p < 0.001, r = 0.704),
and error rates are larger in conflict than in alignment (Prediction D2, 7.31% vs. 2.78%;

51



ns
***

***

0
.3

.6
.9

R
e

s
p

o
n

s
e

 T
im

e
s

 

Alignment Conflict
  

Correct Error ***

0
1

2
3

E
rr

o
r 

R
a

te
 (

%
)

 

Alignment Conflict
  

Figure A.2: Analyses of the Simon task by Gyurkovics et al. (2020). Left: Average
response times (in seconds) for errors and correct answers conditional on alignment vs.
conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

N = 274, z = 8.160, p < 0.001, r = 0.493; Figure A.1, right panel). Further, errors
in conflict are faster than correct answers (Prediction T1, 0.615 vs. 0.637 s; N = 217,
z = −4.375, p < 0.001, r = 0.300), while the opposite is true in alignment, where errors
are slower than correct choices (Prediction T2, 0.600 vs. 0.594 s; N = 151, z = 3.827,
p < 0.001, r = 0.311).

All predictions also hold for trials with reinforced associations. Again, correct an-
swers are slower and error rates are larger in conflict than in alignment (D1, 0.637 vs.
0.625 s; N = 273, z = 4.636, p < 0.001, r = 0.281; D2, 7.67% vs. 3.81%; N = 273,
z = 7.812, p < 0.001, r = 0.473). Also, errors in conflict are faster than correct answers
(T1, 0.629 vs. 0.637 s; N = 238, z = −2.241, p = 0.025, r = 0.145), but the opposite is
true in alignment, (T2, 0.633 vs. 0.625; N = 181, z = 2.454, p = 0.014, r = 0.182).

The predicted relations only hold partially for trials with derived associations, sug-
gesting that the two processes do not differ in terms of response times (Corollary 1).
Specifically, D1 and D2 hold: correct answers are slower and error rates are higher in
conflict than in alignment (D1, 0.632 vs. 0.622 s; N = 273, z = 4.454, p < 0.001,
r = 0.270; D2, 7.42% vs. 4.35%; N = 273, z = 5.281, p < 0.001, r = 0.320). However,
T1 and T2 do not: there are no significant differences in response times between errors
and correct answers neither in conflict (T1, 0.630 vs. 0.632 s; N = 215, z = −0.525,
p = 0.599, r = 0.036) nor in alignment (T2, 0.613 vs. 0.622 s; N = 207, z = 0.802,
p = 0.4226, r = 0.056).

Dataset 2: Simon Task. The dataset of Gyurkovics et al. (2020) comprises N = 118
participants who completed 291 trials of the Simon task each. Figure A.2 illustrates
the results. Correct answers are slower and error rates are larger in conflict than in
alignment (D1, 0.645 vs. 0.555 s; N = 118, z = 9.427, p < 0.001, r = 0.868; D2, 2.26%
vs. 0.18%; N = 118, z = 8.822, p < 0.001, r = 0.812; Figure A.2, right panel). Errors
are faster in conflict than correct answers (T1, 0.558 vs. 0.645 s; N = 88, z = −5.176,
p < 0.001, r = 0.552). In alignment, the overwhelming majority of participants had zero
error rates and hence the sample size is greatly reduced. The comparison still shows that
errors are slower than correct answers in this case, but the difference is not significant
(T2, 0.588 vs. 0.555 s; N = 17, z = 0.308, p = 0.782, r = 0.190).
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Figure A.3: Analyses of the hybrid Stroop-Simon task task by Weissman (2019). Left:
Average response times (in seconds) for errors and correct answers conditional on align-
ment vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

Dataset 3: Hybrid Stroop-Simon Task. Ninety participants in the two experi-
ments of Weissman (2019) (N = 58 and N = 32) completed 768 trials each. We again
report our analysis pooling them together, but results are qualitatively unchanged when
we look at the experiments separately. Figure A.3 illustrates the results. The predic-
tions of the model only apply when the two alternative processes are aligned, and hence
can be summarized as one. This corresponds to full alignment and full conflict trials.
Indeed, correct answers are slower and error rates are larger in (full) conflict than in
(full) alignment (D1, 0.519 vs. 0.447 s; N = 90, z = 8.239, p < 0.001, r = 0.868; D2,
9.73% vs. 3.63%; N = 90, z = 7.563, p < 0.001, r = 0.797; Figure A.3, right panel).
Also, errors are faster than correct answers in (full) conflict, and the opposite is true in
(full) alignment (T1, 0.469 vs. 0.519 s; N = 90, z = −6.211, p < 0.001, r = 0.655; T2,
0.508 vs. 0.447 s N = 88, z = 4.689, p < 0.001, r = 0.500).

For Simon-conflict and Stroop-conflict trials, the model does not apply a priori, since
conflict with one alternative process is actually alignment with the other one. Although
we had no predictions for those situations, it is still interesting to examine them. Simon
conflict (hence Stroop alignment) trials behave as one would expect for the case of
conflict, with correct answers being slower than errors (T1, 0.488 vs. 0.420 s; N = 90,
z = 6.794, p < 0.001, r = 0.716). Stroop conflict (hence Simon alignment) behave
as one would expect for the case of alignment, with correct answers being faster than
errors (T2, 0.497 vs. 0.560 s; N = 89, z = 6.041, p < 0.001, r = 0.640). These results
suggest that the process underlying the Simon effect dominates the one responsible for
the Stroop effect. However, error rates are larger both for Simon conflict (8.49%) and
for Stroop conflict (7.18%) compared to full alignment (3.63%; N = 90; Simon conflict,
z = 7.357, p < 0.001, r = 0.775; Stroop conflict, z = 7.162, p < 0.001, r = 0.755),
further attesting the active influence of both processes in this context.

Dataset 4: A Standard Flanker Task The three experiments of Luna et al. (2020)
comprise a total of ninety-two participants (N = 48, 20, and 24, respectively) who com-
pleted 480, 320, and 416 trials each, respectively. For the sake of brevity, we report
our analysis pooling the three experiments. Results are qualitatively unchanged when
we consider the experiments separately (horizontal vs. vertical displacement was imple-
mented between subjects in the first and within in the second and third). Participants
were also instructed to withhold action if a time counter (in milliseconds) appeared on-
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Figure A.4: Analyses of the Flanker data from Luna et al. (2020). Left: Average response
times (in seconds) for errors and correct answers conditional on alignment vs. conflict.
Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01, ∗ p < .1
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Figure A.5: Analyses of the cued-Flanker data from White and Curl (2018). Left: Aver-
age response times (in seconds) for errors and correct answers conditional on alignment
vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

screen, which happened in around 11.69% of the trials. We exclude these trials from our
analysis.

Figure A.4 shows that our predictions find full support in this context. Correct
answers are slower and error rates are larger in conflict than in alignment (D1, 0.564
vs. 0.522 s; N = 92, z = 8.321, p < 0.001, r = 0.868; D2, 6.03% vs. 3.76%; N = 92,
z = 5.444, p < 0.001, r = 0.568, Figure A.4, right panel). Errors are faster than correct
answers in conflict (T1, 0.555 vs. 0.564 s; N = 87, z = −1.917, p = 0.055, r = 0.206),
and slower in alignment (T2, 0.570 vs. 0.522 s; N = 76, z = 4.230, p < 0.001, r = 0.485).

Dataset 5: Attention and the Flanker Task The data of White and Curl (2018)
includes 123 participants, each of which went through 576 trials, although some trials
were coded as “no response” if the answer was not given within 1.5 s. Figure A.5
illustrates the results. Correct answers are slower in conflict than in alignment in all
cueing conditions (D1, no cue: 0.720 vs. 0.529 s; N = 122, z = 8.027, p < 0.001,
r = 0.727; alerting cue: 0.680 vs. 0.529 s; N = 118, z = 8.981, p < 0.001, r = 0.827;
orienting cue: 0.634 vs. 0.514 s; N = 118, z = 8.541, p < 0.001, r = 0.786). Error
rates are larger in conflict than in alignment (D2, no cue: 22.62% vs. 14.00%; N = 123,

54



***

***
***

0
.5

1
1

.5

R
e

s
p

o
n

s
e

 T
im

e
s
, 

in
 s

 

Alignment Conflict
  

Correct Error

***

0
1

0
2

0
3

0
4

0
5

0
6

0

E
rr

o
r 

R
a

te
 (

%
)

 

Alignment Conflict
  

Figure A.6: Analysis of the visual attention task of Denison et al. (2018). Left: Average
response times (in seconds) for errors and correct answers conditional on alignment vs.
conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

z = 7.577, p < 0.001, r = 0.683; alerting cue: 22.46% vs. 13.76%; N = 123, z = 6.824,
p < 0.001, r = 0.615; orienting cue: 22.85% vs. 13.86%; N = 123, z = 7.241, p < 0.001,
r = 0.653; Figure A.5, right panel). Errors are faster in conflict than correct answers
(T1, no cue: 0.611 vs. 0.720 s, N = 116, z = 5.524, p < 0.001, r = 0.513; alerting cue:
0.557 vs. 0.680 s; N = 118, z = −6.576, p < 0.001, r = 0.605; orienting cue: 0.542 vs.
0.634 s; N = 111, z = −5.667, p < 0.001, r = 0.538). In alignment errors are slower than
correct answers for alerting cues (T2, 0.604 vs. 0.529 s; N = 46, z = 2.562, p = 0.009,
r = 0.378). However, there were no significant differences for the other two cueing
conditions (T2, no cue: 0.585 vs. 0.579 s; N = 61, z = 0.269, p = 0.792, r = 0.034;
orienting cue: 0.531 vs. 0.514 s; N = 51, z = 0.150, p = 0.886, r = 0.021).

B.2 Attentional Processes

Dataset 6: Attention and Perceptual Decisions The dataset of Denison et al.
(2018) includes N = 12 participants with about 2,000 trials each (collected in five differ-
ent test sessions). Figure A.6 shows that our predictions find full support in this context.
Correct answers are slower and error rates are larger in conflict than in alignment (D1,
1.157 vs. 0.759 s; N = 12, z = 3.059, p < 0.001, r = 0.883; D2, 38.36% vs. 31.65%;
N = 12, z = 3.059, p < 0.001, r = 0.883; Figure A.6, right panel). Errors are faster
than correct answers in conflict (T1, 1.083 vs. 1.157 s; N = 12, z = −2.903, p = 0.001,
r = 0.838) and slower in alignment (T2, 0.869 vs. 0.759 s; N = 12, z = 2.510, p = 0.009,
r = 0.725).

Dataset 7: Perceptual Decisions and Initial Cues In the experiment of Evans
et al. (2017), seventy participants completed 480 trials each. Figure A.7 shows that our
predictions are again fully supported. Correct answers are slower and error rates are
larger in conflict than in alignment (D1, 2.144 vs. 2.015 s; N = 70, z = 4.427, p < 0.001,
r = 0.529; D2, 25.88% vs. 14.84%; N = 70, z = 6.727, p < 0.001, r = 0.804). Errors
are faster than correct answers in conflict (T1, 1.845 vs. 2.144 s; N = 70, z = −6.072,
p < 0.001, r = 0.726) and slower in alignment (T2, 2.391 vs, 2.015 s; N = 70, z = 4.427,
p < 0.001, r = 0.529).
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Figure A.7: Analyses of the direction of motion task by Evans et al. (2017). Left: Aver-
age response times (in seconds) for errors and correct answers conditional on alignment
vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.
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Figure A.8: Analyses of the perceptual binary decision task by Heathcote et al. (2019).
Left: Average response times (in seconds) for errors and correct answers conditional on
alignment vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗

p < .01, ∗∗ p < .05, ∗ p < .1.

Dataset 8: Judging Majority Colors Thirty-two participants in Heathcote et al.
(2019) completed 320 trials each, divided among unbiased, reward, and probability-
biased blocks. Figure A.8 shows that, for probability-manipulated blocks, our predictions
find full support. Correct answers are slower and error rates are larger in conflict than in
alignment (D1, 0.685 vs. 0.605 s; N = 32, z = 4.824, p < 0.001, r = 0.853; D2, 23.08%
vs. 8.70%; N = 32, z = 4.357, p < 0.001, r = 0.770; Figure A.8, right panel). Errors
are faster than correct answers in conflict (T1, 0.597 vs. 0.685 s; N = 32, z = −4.432,
p < 0.001, r = 0.783) and slower in alignment (T2, 0.705 vs. 0.605 s; N = 32, z = 4.824,
p < 0.001, r = 0.853).

For reward blocks we find only partial support for our predictions, in line with the
consideration that the experiment was not actually incentivised, hence differences in the
magnitude of purely hypothetical rewards might actually have played a modest role.
Correct answers are marginally significantly slower in conflict than in alignment (D1,
0.678 vs. 0.656 s; N = 32, z = 1.926, p = 0.055, r = 0.340). Errors are larger in conflict
than in alignment (D2, 14.87% vs. 10.97%; N = 32, z = 2.001, p = 0.045, r = 0.354).
In conflict, response times for errors and correct answers are not significantly different
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Figure A.9: Analyses of the three categorization judgment tasks by Hu and Rahnev
(2019). Left: Average response times (in seconds) for errors and correct answers condi-
tional on a trial being in alignment or in a neutral case. Right: Error rates in alignment
vs. neutral. WRS tests: ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .1.

(T1, 0.685 vs. 0.678 s; N = 32, z = −0.692, p = 0.500, r = 0.122). In alignment errors
are slower than correct answers (T2, 0.692 s vs. 0.656 s; N = 32, z = 2.824, p = 0.004,
r = 0.499).

Dataset 9: Predictive Cues and Categorization In the experiments collected
in Hu and Rahnev (2019), thirty, twenty-two, and twenty-one participants completed
480, 672, and 864 trials, respectively. Since they used different tasks, we analyze them
separately. Figure A.9 shows that our predictions are confirmed in all three experiments.
Correct answers are slower in conflict than alignment (D1, Bang and Rahnev (2017):
0.554 vs. 0.503 s; N = 29, z = 2.606, p < 0.001, r = 0.484; de Lange et al. (2013): 0.750
vs. 0.724 s; N = 23, z = 2.768, p = 0.004, r = 0.577; Rahnev et al. (2011): 1.153 vs.
1.000 s; N = 21, z = 3.806, p < 0.001, r = 0.831). Error rates are larger in conflict than
in alignment (D2, Bang and Rahnev (2017): 33.19% vs. 18.36%; N = 30, z = 4.299,
p < 0.001, r = 0.785; de Lange et al. (2013): 21.94% vs. 14.03%; N = 23, z = 2.251,
p = 0.023, r = 0.469; Rahnev et al. (2011): 28.30% vs. 12.51%; N = 21, z = 4.015,
p < 0.001, r = 0.876). Errors are faster in conflict than correct answers (T1, Bang and
Rahnev (2017): 0.515 vs. 0.554 s; N = 29, z = −1.849, p = 0.065, r = 0.343; de Lange
et al. (2013): 0.728 vs. 0.750 s; N = 23, z = −2.859, p = 0.003, r = 0.596; Rahnev
et al. (2011): 1.015 vs. 1.153 s; N = 21, z = −3.493, p < 0.001, r = 0.762). Last, in
alignment, errors are slower than correct answers (T2, Bang and Rahnev (2017): 0.586
vs. 0.503 s; N = 28, z = 2.960, p = 0.002, r = 0.559; de Lange et al. (2013): 0.761 vs.
0.724 s; N = 23, z = 3.198, p < 0.001, r = 0.667; Rahnev et al. (2011): 1.223 vs. 1.000
s; N = 20, z = 3.696, p < 0.001, r = 0.826).

B.3 Social Cognition

Dataset 10: Automatic Imitation of Social Gestures The three experiments
in Ramsey et al. (2019) yielded data for 58, 55, and 59 subjects, respectively. Each
participant went through 256 trials, half of them under each load treatment. For the sake
of brevity, we report our analysis pooling all three experiments (N = 172), while keeping
the cognitive load treatments (low and high load) separate. Results are qualitatively
unchanged when we look at the three experiments separately. Figure A.10 shows that
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Figure A.10: Analyses of the three experiments on automatic imitation by Ramsey et al.
(2019). Left: Average response times (in seconds) for errors and correct answers condi-
tional on alignment vs. conflict further conditional on the cognitive load manipulation.
Right: Error rates in alignment vs. conflict conditional on the cognitive load manipula-
tion. WRS tests: ∗∗∗ p < .01.
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Figure A.11: Analyses of the perspective-taking task by O’Grady et al. (2020). Left:
Average response times (in seconds) for errors and correct answers conditional on align-
ment vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01,
∗∗ p < .05.

all our predictions are also confirmed in this setting, independently of the cognitive load
treatment. Specifically, under low cognitive load, correct answers are slower and error
rates are larger in conflict than in alignment (D1, 0.551 vs. 0.488 s; N = 165, z = 9.909,
p < 0.001, r = 0.771; D2, 12.45% vs. 5.84%; N = 172, z = 8.672, p < 0.001, r = 0.661;
Figure A.10, right panel). Errors are faster than correct answers in conflict (T1, 0.498
vs. 0.551 s; N = 140, z = 5.483, p < 0.001, r = 0.463) but slower in alignment (T2, 0.579
vs. 0.488 s; N = 111, z = 3.448, p < 0.001, r = 0.327). All results hold also under high
cognitive load. Again, correct answers are slower and error rates are larger in conflict
than in alignment (D1, 0.551 vs. 0.493 s; N = 169, z = 10.608, p < 0.001, r = 0.816;
D2, 12.66%vs. 6.51%; N = 172, z = 9.115, p < 0.001, r = 0.695). Errors are faster
than correct answers in conflict (T1, 0.499 vs. 0.551 s; N = 142, z = −4.790, p < 0.001,
r = 0.402) but slower in alignment (T2, N = 169, z = 10.608, p < 0.001, r = 0.816).
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Figure A.12: Analyses of the perspective-taking task by Muto et al. (2019). Left: Aver-
age response times (in seconds) for errors and correct answers conditional on alignment
vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗ p < .05, ∗∗∗

p < .01.

Dataset 11: Perspective Taking (Numerosity) The relevant condition of O’Grady
et al. (2020) encompassed 30 participants who completed 256 trials each. Figure A.11
shows that our predictions find full support in this context. Correct answers are slower
and error rates are larger in conflict than in alignment (D1, 0.787 vs. 0.740 s; N = 30,
z = 3.893, p < 0.001, r = 0.711; D2, 5.95% vs. 3.50%; N = 30, z = 3.422, p = 0.002,
r = 0.625; Figure A.11, right panel). Errors are faster than correct answers in con-
flict (T1, 0.723 vs. 0.787 s; N = 29, z = −2.451, p = 0.013, r = 0.455) and slower in
alignment (T2, 0.852 vs. 0.740 s; N = 21, z = 2.669, p = 0.005, r = 0.582).

Dataset 12: Perspective Taking (Direction) For the sake of brevity, we report
our analysis pooling the three target experiments in Muto et al. (2019). Results are
qualitatively unchanged when we consider the experiments separately. Each experiment
comprised 12 subjects with 320 trials each, of which 160 involved symmetric objects in
the sense described above. Figure A.12 shows that our predictions find full support in
this context, but for prediction T2. Correct answers are slower and error rates are larger
in conflict than in alignment (D1, 0.724 vs. 0.636 s; N = 36, z = 11.625, p < 0.001,
r = 0.704; D2, 4.36% vs. 1.37%; N = 36, z = 4.140, p < 0.001, r = 0.690; Figure A.12,
right panel). Errors are faster than correct answers in conflict (T1, 0.621 vs. 0.724 s;
N = 34, z = −4.864, p < 0.001, r = 0.834). and slower in alignment, but the latter
difference is not statistically significant (T2, 0.683 vs. 0.636 s; N = 26, z = 11.625,
p < 0.001, r = 0.704).

B.4 Memory

Dataset 13: Spoken Word Recognition In Experiment 1 of Charoy and Samuel
(2020), seventy-seven participants completed 32 relevant trials (control trials with non-
words or familiar words are not relevant for our analysis). For our analysis, we ignore the
type of written spelling which accompanied the spoken stimuli. Experiment 2 included
a 48-hour delay between training associations and actual testing. Figure A.13 shows
that our predictions find full support in this context. For Experiment 1, correct answers
are slower and error rates are larger in conflict than in alignment (D1, 0.933 vs. 0.891
s; N = 77, z = 7.548, p < 0.001, r = 0.860; D2, 48.21% vs. 4.79%; N = 77, z = 7.722,
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Figure A.13: Analyses of the recognition task by Charoy and Samuel (2020). Left: Aver-
age response times (in seconds) for errors and correct answers conditional on alignment
vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01 and ∗

p < .1.
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Figure A.14: Analyses of the false-memory task by Brainerd and Lee (2019). Left: Aver-
age response times (in seconds) for errors and correct answers conditional on alignment
vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

p < 0.001, r = 0.880; Figure A.13, right panel). Errors are faster than correct answers
in conflict (T1, 0.893 vs. 0.933 s; N = 77, z = −2.536, p = 0.010, r = 0.289) and
slower in alignment (T2, 0.807 vs. 0.891 s; N = 46, z = 3.939, p < 0.001, r = 0.581).
For Experiment 2, again correct answers are slower and error rates are larger in conflict
than in alignment (D1, 0.961 vs. 0.843 s; N = 74, z = 7.125, p < 0.001, r = 0.828; D2,
47.23% vs. 6.99%; N = 76, z = 7.373, p < 0.001, r = 0.846). Errors are marginally faster
than correct answers in conflict (T1, 0.928 vs. 0.961 s; N = 74, z = −1.678, p = 0.094,
r = 0.195), and slower in alignment (T2, 0.978 vs. 0.843 s; N = 69, z = 5.557, p < 0.001,
r = 0.669).

Dataset 14: Recollection Processes In Brainerd and Lee (2019), one-hundred and
eighty-five participants in six very similar experiments completed 225 trials each. We
again report our analysis pooling the six experiments and all trial types together, but
looking at them separately reveals qualitatively similar patterns. Figure A.14 shows that
our predictions find full support in this context. Correct answers are slower and error
rates are larger in conflict than in alignment (D1, 1.934 vs. 1.752 s; N = 183, z = 9.968,
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Figure A.15: Analyses of the judgment task by Glöckner and Bröder (2014). Left: Aver-
age response times (in seconds) for errors and correct answers conditional on alignment
vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

*** ***

***

** *

***

0
.5

1
1

.5
2

2
.5

R
e

s
p

o
n

s
e

 T
im

e
s

 

Alignment Conflict Alignment Conflict 
Syllogism

 
Base−Rate

  

Correct Error

*** ***
0

2
0

4
0

6
0

E
rr

o
r 

R
a

te
 (

%
)

 

Alignment Conflict Alignment Conflict 
Syllogism

 
Base−Rate

  

Figure A.16: Analyses of the decision tasks (syllogisms and base-rate questions) of
Raoelison et al. (2020). Left: Average response times (in seconds) for errors and correct
answers conditional on alignment vs. conflict. Right: Error rates in alignment vs. con-
flict. WRS tests: ∗∗∗ p < .01.

p < 0.001, r = 0.737; D2, 40.86% vs. 30.55%; N = 185, z = 6.261, p < 0.001, r = 0.460;
Figure A.14, right panel). Errors are faster than correct answers in conflict (T1, 1.867
vs. 1.934 s; N = 183, z = −3.612, p < 0.001, r = 0.267) but slower in alignment (T2,
1.941 vs. 1.752 s; N = 183, z = 8.632, p < 0.001, r = 0.638).

Dataset 15: Recognition Heuristic In Glöckner and Bröder (2014), sixty-one par-
ticipants completed 120 trials, 40 each in alignment, conflict, or neutral cases. Figure
A.15 shows that our predictions are again fully supported. Correct answers are slower
are error rates are larger in conflict than in alignment (D1, 3.178 vs. 2.914 s; N = 61,
z = 5.290, p < 0.001, r = 0.677; D2, 59.94% vs. 33.46%; N = 61, z = 6.669, p < 0.001,
r = 0.854; Figure A.13, right panel). Errors are faster than correct answers in con-
flict (T1, 2.829 vs. 3.178 s; N = 61, z = −4.500, p < 0.001, r = 0.576) and slower in
alignment (T2, 3.181 vs. 2.914 s; N = 61, z = 3.379, p < 0.001, r = 0.433).
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Figure A.17: Analyses of the value-based learning task by Fontanesi et al. (2019). Left:
Average response times (in seconds) for errors and correct answers conditional on align-
ment vs. conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

B.5 Decision Making

Dataset 16: Syllogisms and Base Rates The dataset in Raoelison et al. (2020)
comprises 260 subjects in two experiments (N = 100 and 160, respectively). We again
report our analysis pooling both experiments, but results are qualitatively unchanged
when considering them separately. Our analysis refers to the initial answers collected in
the experiments, provided they were given within the specified 3-second interval.

Our predictions hold both for syllogisms and base-rate questions, as Figure A.16
illustrates. For Syllogisms, correct answers are slower and error rates are larger in
conflict than in alignment (D1, 1.684 vs. 1.423 s; N = 203, z = 7.752, p < 0.001,
r = 0.544; D2, 57.69% vs. 25.45%; N = 259, z = 11.358, p < 0.001, r = 0.706; Figure
A.16, right panel). Errors are faster than correct answers in conflict (T1, 1.527 vs. 1.684
s; N = 177, z = −5.167, p < 0.001, r = 0.388) and slower in alignment (T2, 1.658 vs.
1.423 s; N = 168, z = 6.232, p < 0.001, r = 0.481). For Base Rate judgements, again
correct answers are slower and error rates are larger in conflict than in alignment (D1,
1.795 vs. 1.550 s; N = 162, z = 3.842, p < 0.001, r = 0.302; D2, 54.59% vs. 5.98%;
N = 258, z = 11.692, p < 0.001, r = 0.728; Figure A.16, right panel). Also, errors
are faster than correct answers in conflict (T1, 1.477 vs. 1.795 s; N = 85, z = −1.939,
p = 0.052, r = 0.210) and slower in alignment (T2, 1.700 vs. 1.550 s; N = 41, z = 2.158,
p = 0.030, r = 0.337).

Dataset 17: Reinforcement Learning In Fontanesi et al. (2019), twenty-seven
participants completed 240 trials. Figure A.17 shows that our predictions find support
in this context, with all predictions except T1 confirmed. Specifically, correct answers
are slower and error rates are larger in conflict than in alignment (D1, 1.330 vs. 1.281
s; N = 27, z = 3.195, p < 0.001, r = 0.615; D2, 24.65 vs. 13.24%; N = 27, z = 3.748,
p < 0.001, r = 0.721; Figure A.17, right panel). In conflict, there are no significant
differences in the response times of errors and correct answers (T1, 1.370 vs. 1.330 s;
N = 27, z = −0.817, p = 0.427, r = 0.157). In alignment, errors are slower than correct
answers as predicted (T2, 1.420 vs. 1.281 s; N = 27, z = 3.099, p = 0.001, r = 0.596).
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Figure A.18: Analysis of the dataset from Steyvers et al. (2019). Left: Average response
times (in seconds) for errors and correct answers conditional on alignment vs. conflict.
Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

B.6 Non-Binary Choice

Dataset 18: Task Switching Across the Lifespan We focus on the largest dataset
of Steyvers et al. (2019), which includes 1,000 users who played for up to 60 sessions
each, for a total of 46,470 sessions and 2,881,161 trials (other datasets are restricted to
most-active users or older adults, both with at least a thousand sessions). The 1,000
users in the dataset were selected so that five age groups were approximately equally
represented (21-30, 31-40, 41-50, 51-60, 61-70, and 71-80 years). Figure A.18 shows that
our predictions, as given in Theorems 5–8, find full support in this context. Correct
answers are slower in conflict than in alignment (D1; 1.065 s vs. 0.950 s, N = 1000,
z = 27.391, p < 0.001, r = 0.866). Error rates were larger in conflict than in alignment
(D2; 5.94% vs. 4.18%; N = 1000, z = 22.391, p < 0.001, r = 0.708; Figure A.18,
right panel). The new prediction (D2’) also holds: for all 1,000 subjects, the proportion
of correct responses in alignment (average 95.82%) exceeds the proportion of intuitive
errors in conflict (5.94%). In conflict, intuitive errors are faster than correct answers
(T1; 1.023 s vs. 1.065 s; N = 986, z = −14.732, p < 0.001, r = 0.469), and in case of
alignment errors are slower than correct responses (T2; 0.982 s vs. 0.950 s; N = 999,
z = 10.677, p < 0.001, r = 0.338), although the differences are admittedly small.

Dataset 19: Sequential Conflict Modulation Thirty-nine and forty-eight subjects
participated in Experiments 1 and 2 of Dignath et al. (2019), respectively. Each partici-
pant worked through 1,152 trials in 24 blocks of 48 trials each. For brevity, we report the
analysis pooling both experiments (N = 87). However, results are unchanged if we look
at them separately. The results are also unchanged if we examine the data separately
depending on the type of stimuli representation.

Figure A.19 shows that our predictions also find full support in this context. Correct
answers are slower and error rates are larger in conflict than in alignment (D1, 0.712 s
vs. 0.583 s, N = 87, z = 2.925, p = 0.003, r = 0.314; D2, 10.79% vs. 8.12%, N = 87,
z = 5.982, p < 0.001, r = 0.641; Figure A.19, right panel). Regarding (D2’), for all
87 subjects the proportion of correct responses in alignment (average 91.88%) exceeds
the proportion of intuitive errors in conflict (10.79%). Last, intuitive errors are faster
than correct answers in conflict (T1, 0.695 s vs. 0.712 s; N = 87, z = −2.662, p = 0.007,

63



***

***
***

0
.2

.4
.6

.8
1

R
e

s
p

o
n

s
e

 T
im

e
s

 

Alignment Conflict
  

Correct Intuitive Error

***

0
5

1
0

1
5

E
rr

o
r 

R
a

te
 (

%
)

 

Alignment Conflict
  

Figure A.19: Analysis of the experiments in Dignath et al. (2019). Left: Average re-
sponse times (in seconds) for errors and correct answers conditional on alignment vs.
conflict. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

*** ***

***

0
.2

.4
.6

.8

R
e

s
p

o
n

s
e

 T
im

e
s
, 

in
 s

 

Alignment Conflict
  

Correct Intuitive Error

***
0

2
4

6
8

E
rr

o
r 

R
a

te
 (

%
)

 

Alignment Conflict
  

Figure A.20: Analyses of the congruency data from the two experiments of Schmidt
and Weissman (2014). Left: Average response times (in seconds) for errors and correct
answers conditional on alignment vs. conflict. Under conflict, only intuitive errors are
considered. Right: Error rates in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

r = 0.285), but errors are slower than correct answers in alignment (T2, 0.634 s vs. 0.583
s; N = 87, z = −7.077, p < 0.001, r = 0.759).

Dataset 20: Prime-Probe Congruency Effects Each experimental dataset in
Schmidt and Weissman (2014) comprises 16 subjects, each of which went through 768
trials. We again report our analysis pooling both experiments, but results are qual-
itatively unchanged when we look at the experiments separately. All our predictions
hold in this setting, as illustrated in Figure A.20. Correct answers are slower and er-
ror rates are higher in conflict than in alignment (D1, 0.548 s vs. 0.470 s, N = 32,
z = 4.937, p < 0.001, r = 0.873; D2, 5.37% vs. 1.89%; N = 32, z = 4.479, p < 0.001,
r = 0.792; Figure A.20, right panel). For (D2’), for all 32 subjects the proportion of
correct responses in alignment (average 98.11%) exceeds the proportion of intuitive er-
rors in conflict (5.37%). In conflict, intuitive errors are faster than correct answers (T1,
0.430 s vs. 0.548 s; N = 31, z = −4.625, p < 0.001, r = 0.831). In alignment, errors
are slower than correct answers (T2, 0.523 s vs. 0.470 s; N = 30, z = 2.972, p = 0.002,
r = 0.543).
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Figure A.21: Analyses of the Bat-and-Ball questions of Raoelison et al. (2020). Left:
Average response times (in seconds) for errors and correct answers conditional on align-
ment vs. conflict. Under conflict, only intuitive errors are considered. Right: Error rates
in alignment vs. conflict. WRS tests: ∗∗∗ p < .01.

Dataset 21: Cognitive Reflection As in the analysis of Paradigm 16, we pool
the two experiments of Raoelison et al. (2020) for a total of 260 subjects. Again, our
predictions hold, as illustrated in Figure A.21. Correct answers are slower and error
rates are higher in conflict than in alignment (D1, 2.225 s vs. 1.772 s, N = 59, z = 2.083,
p = 0.037, r = 0.271; D2, 79.79% vs. 4.28%; N = 224, z = 12.940, p < 0.001, r = 0.865;
Figure A.16, right panel). Unfortunately, Raoelison et al. (2020) did not record the
actual responses, but merely whether they were correct or not, and hence we cannot
distinguish intuitive errors and other errors. Thus, for predictions (D2’) and (T1), we
conduct the tests as if all errors had been intuitive. Although this is probably not the
case, since many errors in the CRT are intuitive, it might be a reasonable approximation.
The proportion of correct responses in alignment is indeed larger than the proportion of
errors in conflict (D2’, 95.72% vs. 79.79%; N = 260, z = 5.876, p < 0.001, r = 0.364).
In conflict, errors are faster than correct answers (T1, 2.150 s vs. 2.225 s; N = 28,
z = −2.186, p = 0.028, r = 0.413). In alignment, the sample size is drastically reduced
since the vast majority of participants made no mistakes. In this case, errors are slower
than correct answers, but the difference is not significant (T2, 2.125 s vs. 1.772 s; N = 24,
z = 1.086, p = 0.286, r = 0.222).

C Analysis of Neutral Trials in the Individual Datasets

In this section we report the analyses of neutral trials in the paradigms which include
this particular type of situation. By definition, neutral trials are those where the cue
triggering the intuitive/impulsive process is absent, and hence only the deliberative pro-
cess is active. Predictions D1, D2 and D2’ explicitly compare conflict trials to alignment
trials, while predictions T1 and T2 refer only to conflict or alignment trials, respectively.
Hence, none of those predictions apply to neutral trials. Propositions 1 and 2 deliver pre-
dictions for error rates in neutral trials compared to conflict and alignment trials, which
we test below. As discussed in the main text, response times in these trials can also be
used (in a more exploratory sense) to study the properties of the involved deliberative
processes.
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Error rates in neutral trials In agreement with prediction N1, error rates where
almost always larger in neutral trials compared to alignment trials. We observe this effect
in twelve of the fifteen studies containing neutral trials. This occurs in Dataset 5 (No cue:
N = 123, z = 2.784, p = 0.005, r = 0.251; Alerting cue: N = 123, z = 2.431, p = 0.015,
r = 0.219), Dataset 6 (N = 12, z = 2.903, p = 0.002, r = 0.839), Dataset 8 (probability
blocks: N = 32, z = 4.151, p < 0.001, r = 0.733; reward blocks N = 32, z = 2.431,
p = 0.014, r = 0.430), Dataset 9 (Experiment 1: N = 30, WSR, z = 2.180, p = 0.029,
r = 0.400; Experiment 3: N = 21, WSR, z = 2.485, p = 0.011, r = 0.543), Dataset 15
(N = 61, z = 6.777, p < 0.001, r = 0.868), Dataset 16 (Base Rate: N = 160, z = 4.796,
p < 0.001, r = 0.376; Syllogism: N = 159, z = 4.879, p < 0.001, r = 0.384), Dataset
17 (N = 27, z = 3.099, p = 0.001, r = 0.600), and Dataset 21 (N = 58, z = 3.456,
p < 0.001, r = 0.454). We observe no significant differences in two datasets. This occurs
in Dataset 5 (Orienting cue: N = 123, z = 1.333, p = 0.184, r = 0.120) and Dataset’s
9 Experiment 2 (N = 23, WSR, z = 0.578, p = 0.580, r = 0.120). The opposite effect,
i.e. significantly more errors in alignment than neutral trials, is only observed in Dataset
18 (N = 999, z = 22.166, p < 0.001, r = 0.700). We remark again that, as for the
comparison of response times of correct choices versus alignment situations, in Dataset
18 neutral situations corresponded to the first trials of the different sessions, hence they
might not be completely comparable to the other trials.

In agreement with predictions N2 and N2’, error rates where generally lower in
neutral trials compared to conflict trials. Specifically, we observe significantly more
errors in conflict than neutral situations in eleven of the fifteen studies containing neutral
trials (Figure B.2). This occurs in Dataset 5 (No cue: conflict 22.62% vs. neutral
14.72%; N = 123, z = 2.784, p = 0.005, r = 0.251; Alerting cue: conflict 22.46% vs.
neutral 14.35%; N = 123, z = 2.431, p = 0.015, r = 0.219; Orienting cue: conflict
22.85% vs. neutral 14.30%; N = 123, z = 1.333, p = 0.184, r = 0.120), Dataset’s 8
probability blocks (conflict 23.08% vs. 14.73% neutral; N = 32, z = −3.927, p < 0.001,
r = 0.694), experiment 1 of Dataset 9 (conflict 33.19% vs. neutral 22.68%; N = 30,
WSR, z = −3.703, p = 0.001, r = 0.676), Paradigm 15 (conflict 59.94% vs. neutral
56.31%; N = 61, z = 2.816, p = 0.004, r = 0.361), Dataset 17 (conflict 24.65% vs.
neutral 18.55%; N = 27, z = −2.763, p = 0.004, r = 0.532), and Dataset 18 (conflict
5.94% vs. neutral 1.21%; N = 999, z = −24.403, p < 0.001, r = 0.772). In the last two
datasets, the tests correspond to intuitive errors in multi-alternative choice as described
in (N2’).

The opposite effect is never observed. For the remaining four of the fifteen stud-
ies with neutral trials, we observe no significant differences. This occurs in Dataset 6
(conflict 38.36% vs. 37.65 neutral; N = 12, z = 0.628, p = 0.569, r = 1.182), Dataset’s
8 reward blocks (conflict 14.87% vs. 14.73% neutral; N = 32, z = 0.337, p = 0.746,
r = 0.060), and two experiments of Dataset 9 (Experiment 2: conflict 21.94% vs. neutral
21.55%, N = 23, WSR, z = −0.091, p = 0.941, r = 0.020; Experiment 3: conflict 28.30%
vs. neutral 28.99%, N = 21, WSR, z = 0.087, p = 0.946, r = 0.020).

Comparing response times of correct responses between neutral and other
trials The second comparison of interest concerns the speed of correct responses in
neutral trials compared to conflict or alignment trials. As discussed in the main text, if
the time needed for conflict detection and resolution is enough to offset the differences
in response times among the processes, we would obtain the prediction that correct
responses for neutral trials are faster than those in conflict, but slower than those in
alignment.
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Figure B.1: Comparison of error rates between neutral trials and alignment trials, for
all datasets containing neutral trials. Effect sizes are for the non-parametric tests. For
studies 18 and 21 error rates are calculated using intuitive errors.

Figure B.2: Comparison of error rates between neutral trials and conflict trials, for all
datasets containing neutral trials. Effect sizes are for the non-parametric tests. For
studies 18 and 21 error rates are calculated using intuitive errors.

This is generally confirmed by the data. First, we observe significantly slower correct
choices in conflict than neutral in nine comparisons (Figure B.3). This occurs in Dataset
5 (no-cue condition: N = 119, z = −8.605, p < 0.001, r = 7.789; alerting-cue condition:
N = 117, z = −8.231, p < 0.001, r = 0.761; orienting-cue condition: N = 118, z =
−8.928, p < 0.001, r = 0.822), Dataset 8’s probability blocks (N = 32, z = −2.655,
p = 0.007, r = 0.469), Dataset 9 (Experiment 1: N = 29, WSR, z = −2.606, p = 0.008,
r = 0.483; Experiment 2: N = 23, WSR, z = −2.555, p = 0.009, r = 0.532; Experiment
3: N = 21, WSR, z = −2.555, p = 0.009, r = 0.526), Dataset 16’s Base Rates (N = 107,
z = −3.465, p < 0.001, r = 0.335), and Dataset 18 (N = 999, z = −25.747, p < 0.001,
r = 0.812). The opposite effect, i.e., significantly faster correct choices in conflict than
neutral situations, only occurs in Dataset 17 (N = 27, z = −3.724, p < 0.001, r =
0.716). In the remaining five of the fifteen studies containing neutral trials, we observe
no significant differences. This occurs in Dataset 6 (N = 12, z = −1.255, p = 0.233,
r = 0.884), the reward condition of Dataset 8 (N = 32, z = 1.103, p = 0.278, r = 0.195),
Dataset 15 (N = 61, z = 0.758, p = 0.453, r = 0.097), Dataset 16’s Syllogism (N = 121,

67



Figure B.3: Comparison of response times of correct choices between neutral and conflict
trials, for all datasets containing neutral trials. Effect sizes refer to the non-parametric
tests.

z = −0.167, p = 0.869, r = 0.015) and Dataset 21’s CRT (N = 14, z = 0.565, p = 0.604,
r = 0.151).

Second, we also observe significantly slower correct choices in neutral than alignment
in seven comparisons (Figure B.4). This occurs in two of Dataset 5’s conditions (Alerting
cue: N = 116, z = 4.105, p < 0.001, r = 0.381; 0.514; N = 118, z = 2.859, p = 0.004,
r = 0.263), Dataset 6 (N = 12, z = 3.059, p = 0.005, r = 0.884), Dataset 8’s probability
blocks (N = 32, z = 4.488, p < 0.001, r = 0.766), Dataset 9’ Experiment 3 (N = 21,
WSR, z = 2.485, p = 0.011, r = 0.543), Dataset 15 ( N = 61, z = −4.040, p < 0.001,
r = 0.517), and Dataset 17 (N = 27, z = 4.445, p < 0.001, r = 0.854). The opposite
effect, i.e., significantly slower correct choices in alignment than neutral situations, only
occurs in Dataset 18 (N = 999, z = 27.244, p < 0.001, r = 0.862) where neutral
situations corresponded only to the first trials of the different sessions. In the remaining
seven of the fifteen studies containing neutral trials, we observe no significant differences.
This occurs in Dataset 5’s no cue condition (N = 120, z = −0.686, p = 0.494, r = 0.063),
Dataset 8’s reward blocks (N = 32, z = −0.916, p = 0.369, r = 0.162), two of the
experiments in Dataset 9 (Experiment 1: N = 30, WSR, z = −0.874, p = 0.393,
r = 0.159; Experiment 2: N = 23, WSR, z = −0.578, p = 0.580, r = 0.120), Dataset 16
(Base Rate: N = 20, z = −0.299, p = 0.784, r = 0.067; Syllogism N = 102, z = −0.018,
p = 0.986, r = 0.002), and Dataset 21 (N = 8, z = −1.400, p = 0.195, r = 0.495).

Relative speed of errors in neutral trials Last, we compare the speed of errors
and correct responses in neutral trials for datasets which include those (Figure 5 in the
main text). We observe that either the response times of errors and correct responses
are not significantly different, or, if a difference exists, it goes in the direction of errors
being slower (all tests are WSR tests).

There are no significant differences between the response times of errors and correct
responses in the neutral trials in Dataset 5 (no-cue condition: errors 0.591 s vs. correct
answers 0.577 s, N = 73, z = 0.542, p = 0.592, r = 0.063; alerting-cue condition: 0.585
vs. 0.545 s, N = 53, z = 0.164, p = 0.874, r = 0.023; orienting-cue condition: 0.520 vs.
0.514 s, N = 58, z = 1.428, p = 0.155, r = 0.189), Dataset 8 (errors 0.678 s vs. correct
answers 0.664 s, N = 32, z = −1.496, p = 0.139, r = 0.264), Dataset 16 (syllogisms:
errors 1.662 s vs. correct answers 1.646 s, N = 118, z = 0.632, p = 0.529, r = 0.058;
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Figure B.4: Comparison of response times of correct choices between neutral and align-
ment, for all datasets containing neutral trials. Effect sizes refer to the non-parametric
tests.

base rates: 1.622 vs. 1.570 s, N = 51, z = −0.553, p = 0.586, r = 0.077), and Dataset
21 (2.268 vs. 1.937 s, N = 8, z = −0.280, p = 0.843, r = 0.100).

We observe significantly slower errors (compared to correct responses) in the neutral
trials of four other datasets, encompassing six different comparisons. This occurs in
Dataset 6 (errors 0.994 s vs. correct answers 0.932 s, N = 12, z = 1.804, p = 0.077,
r = 0.810), Dataset 9 (Experiment 1: errors 0.577 s vs. correct answers 0.501 s, N = 29,
z = 3.362, p < 0.001, r = 0.624; Experiment 2: 0.755 vs. 0.727 s, N = 23, z = 3.984,
p < 0.001, r = 0.831; Experiment 3: 1.172 vs. 1.033 s, N = 21, WSR, z = 3.493,
p = 0.001, r = 0.762), Dataset 17 (errors 1.489 s vs. correct answers 1.391 s, N = 27,
z = 3.147, p = 0.001, r = 0.606), and Dataset 18 (0.985 vs. 0.805 s, N = 217, z = 3.524,
p < 0.001, r = 0.239).

We only observe significantly faster errors in the most-populated-city question of
Dataset 15 (errors 2.920 s vs. correct answers 3.146 s, N = 61, z = 3.394, p < 0.001,
r = 0.435). However, even in this case the effect only holds if both cities were categorized
as unknown (2.773 s vs. 3.269 s; N = 61, z = 4.435, p < 0.001, r = 0.568). If both
are categorized as known, the difference is not significant (3.120 vs. 3.115 s, N = 61,
z = 0.018, p = 0.989, r = 0.002).
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